
Spherical Lattice Vector Quantization
in Neural Audio Coding

Thomas Muller
Orange Research

IRISA, University of Rennes
Lannion, France

thomas.muller@orange.com

Stéphane Ragot
Orange Research
Lannion, France

stephane.ragot@orange.com

Pascal Scalart
IRISA, University of Rennes

Lannion, France
pascal.scalart@irisa.fr

Abstract—In neural audio coding, latent space quantization
is often trained together with the rest of the model. In this
work, we investigate the use of algebraic vector quantization
(VQ) in a shape-gain approach, to modify the residual vector
quantization (RVQ) method in the DAC neural audio codec.
Results on speech signals show that the overall performance
of DAC with the proposed modifications is nearly equivalent to
the original DAC model, while offering significant advantages:
virtually no codebook storage, fast nearest neighbor search and
indexing, codebook training limited to one gain optimization per
quantization stage.

Index Terms—neural audio coding, lattice, spherical vector
quantization, audio quality.

I. INTRODUCTION

In recent years, the field of audio coding has been shaken
up by deep learning technologies. The use of neural networks
enables much lower data rates in a variety of applications,
such as voice/video calling, music storage. More recently,
neural audio coding has been essential to ”tokenize” audio to
interface with large language models, for instance in speech-
to-speech translation [1] or music generation applications
[2]. Autoencoder architectures with GAN-type training (using
discriminators) have shown great results, with codecs such
as SoundStream [3], EnCodec [4] or Descript Audio Codec
(DAC) [5]. Other approaches such as diffusion models are
also being investigated [6], [7].

One fundamental building block of neural audio coding is
the quantization of latent space. Residual Vector Quantization
(RVQ) [3] – which is revisiting the well-known multi-stage
VQ [8] – is a popular method enabling multi-rate operation.
Alternative methods have been proposed, such as Finite
Scalar Quantization [9] or Lookup Free Quantization [10].
Many quantization techniques have been available in the
literature for many years. Among them, algebraic vector
quantization, in particular spherical lattice VQ [11], has been
successfully applied to ”traditional” speech and audio coding
– for instance the method in [12], leveraging spherical lattice
VQ, has been adapted in several ”traditional” codec standards
(e.g., AMR-WB+, USAC, EVS, IVAS).

In this work, we propose to study the use of such algebraic
VQ within the state-of-the-art neural audio codec Descript
Audio Codec (DAC) [5]. Latent space quantization in DAC

is based on RVQ, however it differs from the RVQ method
in SoundStream and EnCodec by the use of projection and
expansion layers to perform code lookup in a space with lower
dimension than the latent space.

The main contributions of this paper are listed below:
• We integrate lattice VQ within DAC, with shape-gain ap-

proach [13], considering two cases: without DAC retraining
vs. with a complete model retraining;

• We present fast lattice quantization algorithms in dimension
8 with a performance validation on the Gaussian source –
nearest neighbor search is derived from [14], indexing and
decoding algorithms are new, building on top of [14].

• We report the (objective and subjective) speech quality of
the proposed modifications to DAC.

II. BRIEF REVIEW OF DESCRIPT AUDIO CODEC (DAC)

The DAC codec [5] belongs to the family of autoencoders
trained in a GAN framework. At inference time, it com-
prises a convolutional encoder and decoder, and latent space
quantization. Several variants of the model are proposed in
[5]; we consider only the full-band variant, operating with
mono audio sampled at 44.1kHz. Each input frame of 512
samples is converted by the encoder into a 1024-dimensional
latent vector; after quantization, the quantized latent vector is
converted back into audio by the decoder.

Multi-stage quantization, known as RVQ [3] in neural audio
coding, is used to operate at several bitrates. Quantization
stages Qk are cascaded, as shown in Fig. 1. The number
of quantization stages is flexible, ranging from 1 to Kmax.
In DAC, Kmax = 9 and each stage has a codebook of
M = 1024 codewords (10 bits). The search for the best
codeword is carried out in a lower dimensional space than
latent space. Linear projection and expansion layers (Pk and
Ek, respectively) are added in DAC to go from the latent space
dimension 1024 to the lookup dimension 8.

We analyzed the 8-dimensional pretrained RVQ codebooks
in the original DAC model by inspecting histograms of code-
word norms (L2) in each RVQ stage, as shown in Fig. 2. The
distribution is ”narrow” for the last 6 RVQ stages, which may
indicate that learned codewords are approximately spherical.
In addition, we calculated the minimum angular distance be-
tween codewords in each stage, to study the potential uniform

16ISBN: 978-9-46-459362-4 EUSIPCO 2025

8 8

8 8

8 8

Fig. 1: Latent space quantization in DAC: (a) Cascade of Kmax stages comprising projection (Pk), vector quantization (Qk),
and expansion (Ek) blocks; (b) Qk in DAC: stochastic VQ using learned codebooks Ck; (c) Proposed replacement for Qk:
shape-gain VQ based on spherical lattice VQ.

6 8 10 12 14 16
L2 norm

Mean 1: 10.64

Mean 2: 9.03

Mean 3: 8.29

Mean 4: 7.84

Mean 5: 7.50
Mean 6: 7.25

Mean 7: 6.98
Mean 8: 6.68

Mean 9: 6.34

Fig. 2: Histograms of codeword (L2) norms in the Kmax = 9
pre-trained RVQ codebooks of DAC. Each label ’Mean k’
indicates the mean norm of codewords in Ck.

spherical distribution of codewords. The minimum distance is
around 35.5 deg. in the first stage, and it is around 38 deg. in
other stages – this can be compared to the expected distance of
44 deg. for uniformly distributed codes in dimension 8 [15].
These observations are not totally surprising, given that the
cosine similarity criterion is used for codebook search in DAC.
This insight on DAC codebooks motivated the use of spherical
vector quantization in this work.

III. SPHERICAL LATTICE VECTOR QUANTIZATION

A. Generalities on spherical lattice quantization

Spherical VQ consists in representing a source
x = (x1, . . . , xn) ∈ Rn by a codebook
C = {y0, . . . ,yM−1} ∈ SMn−1 which is a finite subset
of (n − 1)-sphere Sn−1 of unit radius (with no loss of
generality), where

Sn =
{
x ∈ Rn+1

∣∣∣ ||x||2 = x2
1 + · · ·+ x2

n+1 = 1
}

(1)

When the distortion is defined as the (mean) squared error,
it is easy to show that the nearest neighbor search of x in
C boils down to maximizing the dot product xT · yi over
i = 0, ...,M − 1, which is equivalent to the so-called cosine
similarity (up to a fixed scale).

Spherical codes play an important role in source coding
due to the ”sphere hardening” property of the Gaussian source
[16], i.e. the n-dimensional vectors of an i.i.d Gaussian source
fall with high probability on a spherical surface when n→∞.

A comprehensive review of spherical codes can be found in
[17].

In this work we study the application of a particular type
of spherical code where the codebook is derived from a
lattice. A (regular) lattice Λ in Rn is a set of discrete points
defined by Λ = k.G, where k is an integer vector in Zn

and G is a generator matrix obtained by stacking a set of
linear independent basis vectors. A trivial lattice example is
Zn for which the identity matrix is a generator matrix. A
comprehensive treatment of lattices can be found in [18].

Spherical lattice VQ has been introduced in [11], and the
special cases of spherical VQ using the Gosset and Leech
lattices in dimension 8 and 24 has been studied in [14] and
[19], respectively.

B. Spherical lattice quantization based on the Gosset lattice

Since RVQ in DAC operates with codebooks in dimension
8, we focus here only on the case of the Gosset lattice denoted
RE8. We recall the definition of RE8 = 2D+

8 [18] :

RE8 = 2D8 ∪ {2D8 + (1, . . . , 1)} , (2)

with

D8 =

{
(x1, . . . , x8) ∈ Z8

∣∣∣ 8∑
i=1

xi is even

}
. (3)

A point x = (x1, . . . , x8) in RE8 verifies the following
properties:

• All elements xi are integers
• The sum of all elements xi is a multiple of 4
• All elements xi have the same parity, i.e. they are either

all even or all odd
• The sum of x2

i is a multiple of 8
The latter property can be interpreted geometrically by de-
composing RE8 into an union of concentric spherical shells
(or orbits) of index m centered on the origin and of radius
2
√
2m, where m ≥ 0 is an integer; the set of lattice points on

a given shell may be used to define a spherical code [14].
A special property of RE8 is that any permutation of a point

x in a RE8 shell remains in the same shell. One can therefore
decompose each lattice shell into a union of permutation
codes, where one vector called ”leader” generates a subset
of equivalent vectors on the same shell by permutation [14].
A ”leader” is an integer vector whose elements are sorted in

17

descending order, this vector may be either a ”signed leader”
or an ”absolute leader”. Codewords related to a signed leader
are generated through permutations only, while codewords
related to an absolute leader are generated by permutation and
sign changes, with the additional constraint in RE8 that the
parity of the total number of negative elements is identical to
the predefined parity of the absolute leader (denoted ISIG in
[14]). Fast nearest neighbor search algorithms can be designed
in a spherical RE8 codebook by exploiting this concept of
”leaders”. The full search is replaced by a search limited to a
small set of leaders.

C. Quantization algorithms based on absolute leaders

In the following, given a vector x = (x1, . . . , x8), the
notation |x| indicates that the absolute value is applied to
x element-wise, such that |x| = (|x1|, . . . , |x8|). Moreover,
sorting elements of x in descending order results in a new
vector denoted x̃. With these conventions, an absolute leader
will be noted |ỹk| because its elements are by definition all
positive and sorted in descending order.

In this work we use a fast codebook search based on
(normalized) absolute leaders in RE8. The nearest neigh-
bor search algorithm of a given input x = (x1, . . . , x8)
in a spherical codebook defined by a list of L absolute
leaders {|ỹ1|, . . . , |ỹL|}, with associated sign parity ISIGk,
k = 1, . . . , L, is detailed below.
1) Compute the absolute vector |x̃| by permuting elements of
|x| to sort them in descending order. Save this permutation.

2) Compute sign parity Π(x) of x:

Π(x) = parity

 8∑
j=1

sign(xj)

 , (4)

where parity(s) = 0 if s is even and 1 if s is odd;
sign(x) = 1 if x < 0, 1 otherwise.

3) Compute dot product with L normalized leaders with a
penalty term accounting for sign parity mismatch:

d(k) = |x̃|T · |ỹk|
∥ |ỹk| ∥

− 2ϵ, k = 1, . . . , L (5)

where ϵ = 0 if Π(x) = ISIGk and |x̃8|. |ỹk,8|
∥|ỹk|∥ otherwise.

4) Find best leader by maximizing the dot product:

k∗ = argmax
k=1,...,L

d(k) (6)

5) Reconstruct codeword y = (y1, . . . , y8) as follows:
a) Initialize from absolute leader taking into account sign

parity mismatch: yj = |ỹk∗,j |/ ∥ |ỹk∗ | ∥, j = 1, . . . , 8
and negate last element y8 if Π(x) ̸= ISIGk∗

b) Apply inverse permutation (from Step 1) to y
c) Apply signs from x: negate yj if xj < 0, j = 1, . . . , 8

The above algorithm is essentially the same as in [14], the
main difference is that we allow absolute leaders from different
shells to be in the spherical codebook, normalizing the dot
product by ∥ |ỹk| ∥.

Spherical codebook indexing based on absolute leaders is
not described in [14]. We propose the following indexing
algorithm. The index i of the codeword y is defined as:

i = σ(y)ν(|ỹk∗ |) + ρ(|y|) +
k∗−1∑
k=1

Nk (7)

where σ(y) is the sign code of y, ν(|ỹ|) is the number of
permutations of the absolute leader |ỹk∗ |, ρ(|y|) is the rank
of permutation of |y| (given that |y| is a permutation of |ỹk∗ |),
and Nk is the total number of possible signed permutations of
|ỹk∗ | in RE8. The sign code σ(y) of y depends on whether
the absolute leader |ỹk∗ | is even or odd. For an even leader,
σ(y) is obtained by stacking sign bits of non-zero elements of
y. For an odd leader, the first 7 signs of y1...y7 are stacked. In
this work we simply use Schalkwijk’s formula [20] to compute
the rank of permutation ρ(|y|).

The decoding of an index i (obtained according to Eq. 7)
is summarized below, using the following algorithm:
1) Find absolute leader index k∗ by comparing succes-

sively the value of i against a precomputed table giving∑k∗−1
k=1 Nk for k∗ = 1, . . . , L.

2) Update i by subtracting the corresponding cardinality off-
set: i← i−

∑k∗−1
k=1 Nk

3) Get σ(y) and ρ(|y|) as the quotient and remainder (respec-
tively) in the integer division of i by ν(|ỹk∗ |)

4) Find y by permuting the absolute leader |ỹk∗ | based on
rank of permutation ρ(|y|)

5) Negate elements of y based on the sign code σ(y)

D. Evaluation on the Gaussian source

Table I defines a set of RE8 spherical codebooks at R = 8,
10 and 12 bits per vector. At 8 bits, the codebook consists
of the shell 1 (240 points) and an extra leader (16 points)
from shell 2 to M = 256 codewords. At 10 bits, we define
two possible variants with M = 1024 codewords: one with
a single absolute leader (incomplete shell 2), an alternative
(denoted ’alt’.) with 4 absolute leaders (mixing shells 1, 3, 5
and 10). At 12 bits, the codebook of M = 4080 codewords
consists of shell 2 (2160 points) and one leader from shell
1 (128 points) and shell 3 (1792 points). A Monte Carlo
simulation has been conducted using trials of 100,000 random
vectors x with a zero-mean unit-variance Gaussian source in
dimension 8. Each input vector x is quantized in y using
the RE8 spherical quantization at R bits (based on Table I)
with search, indexing and decoding algorithms described in the
previous section. A fixed scaling factor gopt is applied to each
codeword y determined (optimized) empirically to minimize
the mean squared error E[||x− gopty||2]. Table II reports the
resulting signal to noise ratio (SNR), compared to the rate-
distortion (R-D) bound given by SNR=6.02 (R/8) dB. For the
two codebook variants at 10 bits, we observe that the codebook
with a single absolute leader ([3, 1, . . . , 1]) gives a better SNR.

IV. EXPERIMENTAL RESULTS ON DAC
To allow for a fair comparison, we replaced the 10-bit RVQ

codebooks from DAC (Fig. 1 (b)) by shape-gain codebooks

18

TABLE I: RE8 spherical codebooks.

R k Absolute leader |ỹk| ISIGk Nk

8 0 [2, 2, 0, 0, 0, 0, 0, 0] 0 112
1 [1, 1, 1, 1, 1, 1, 1, 1] 0 128
2 [4, 0, 0, 0, 0, 0, 0, 0] 0 16

10 0 [3, 1, 1, 1, 1, 1, 1, 1] 1 1024
10 0 [1, 1, 1, 1, 1, 1, 1, 1] 0 128

(alt.) 1 [6, 2, 0, 0, 0, 0, 0, 0] 0 224
2 [4, 4, 4, 0, 0, 0, 0, 0] 0 448
3 [8, 4, 0, 0, 0, 0, 0, 0] 0 224

12 0 [1, 1, 1, 1, 1, 1, 1, 1] 0 128
1 [4, 0, 0, 0, 0, 0, 0, 0] 0 16
2 [2, 2, 2, 2, 0, 0, 0, 0] 0 1120
3 [3, 1, 1, 1, 1, 1, 1, 1] 1 1024
4 [2, 2, 2, 2, 2, 2, 0, 0] 0 1792

TABLE II: Performance of RE8 spherical vector quantization.

R gopt SNR (dB) R-D bound (dB)
8 2.29 4.96 6.02

10 2.45 6.06 7.52
10 (alt.) 2.40 5.90 7.52

12 2.51 7.24 9.03

(Fig. 1 (c)) where the shape codebook is the 10-bit RE8

spherical codebook defined in Table I with a single absolute
leader – this case gave better performance on the Gaussian
source compared to the alternative 10-bit codebook. All RE8

quantization algorithms (nearest neighbor search, indexing
and decoding) have been vectorized for use in the PyTorch
framework. In each quantization stage, the RE8 codebook is
scaled by a single scale factor (gain) that is to be optimized
empirically (at inference phase) or learned (at training phase).

A. Experiment 1 without retraining of DAC

We replaced DAC quantizers with spherical VQ. We tested
different combinations of RVQ and spherical VQ, where the
first κ quantization stages are kept as pretrained RVQ from
DAC and the last Kmax−κ stages are replaced by shape-gain
RE8 VQ, with κ ∈ [0,Kmax − 1].

A gain gk is defined for RE8 lattice VQ, as shown in Fig. 1
(c). The value of gk has been optimized heuristically based on
the value gopt = 2.45 obtained for coding the 8-dimensional
Gaussian source at 10 bits, with a correction factor given by
the ratio between the average codeword norm in pre-trained
Ck (i.e., ’Mean k’ in Fig. 2) and the average norm of the
8-dimensional Gaussian source.

The modified DAC model where only latent space quan-
tization is modified at inference time was evaluated using a
speech test database. Following [21], we used the POLQA
(P.863) objective model [22].The test dataset consisted of 36
phonetically balanced double sentences in French (6 talkers
with 3 women and 3 men, 6 sentences per talker). These
sentences are adapted in length and content for use with
POLQA. Objective speech quality results are shown in Fig. 3.
Let alone the extreme case, where all RVQ stages are replaced
by lattice VQ (κ = 0), objective quality results are equivalent
in all cases. It is expected that the case κ = 0 would give
lower results, since the RVQ codebook in the first stage is less
spherical (see Fig. 2), so spherical lattice VQ is less suitable
in the first stage.

1 2 3 4 5 6 7 8 9

Number of quantization stages

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
O

S
-L

Q
O

(P
O

L
Q

A
)

DAC (ori.)

κ=0

κ=1

κ=2

κ=3

κ=4

κ=5

κ=6

κ=7

κ=8

Fig. 3: Speech quality (estimated by POLQA) versus bitrate,
for different configurations (no retraining of DAC).

For Experiment 1 without DAC retraining, keeping at least
one stage of learned VQ seems necessary. Nevertheless, these
results suggest that it is possible to replace the other 8
learned codebooks by lattice codebooks without degrading
audio quality.

B. Experiment 2 with retraining of full DAC model

Results from Experiment 1 demonstrated that spherical
VQ may be integrated within a pretrained version of the
DAC model. The rest of the work focused on retraining the
DAC model where RVQ is replaced by lattice VQ during
training. We tested several cases: lattice VQ only (κ = 0),
a combination of first κ = 1 and κ = 2 RVQ stage(s)
following by lattice VQ stages. Here, the gains gk in each
stage using lattice VQ were initialized to 1 and may or may
not be trainable as extra model parameters.

The DAC variants were trained using the original DAC
source code [23] and under the same conditions except for the
dataset. For the sake of reproducibility, we used the publicly
available EARS speech database [24] comprising 100 hours
of full-band anechoic clean speech with 107 speakers and
covering different speaking styles (reading, emotional speech,
conversational freeform speech, etc.). The original DAC model
was also retrained on the EARS dataset for comparison
purposes.

Results for retrained models are shown in Fig. 4. The
same speech test dataset as Experiment 1 was used. Only
the curves for a trainable gain gk are shown, as models
with a not trainable gain have poorer results. Variants with
κ = 0, 1, and 2 and the DAC model trained on EARS are
very close in performance, and are at least as good as the
(pre-trained) original DAC model. The original DAC deviates
from these models at lower bitrates, possibly due to the more
diverse audio content used in training, which could make the
original DAC better for various types of audio, and a bit
worse for speech on the EARS dataset compared to models
trained only on speech with the EARS dataset. These results
show that the overall performance of DAC with a modified
latent space quantization method is nearly equivalent to the
original DAC model, while offering significant advantages:
virtually no codebook storage, fast nearest neighbor search and

19

1 2 3 4 5 6 7 8 9

Number of quantization stages

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
O

S
-L

Q
O

(P
O

L
Q

A
)

a)

1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

0.4

∆
P

O
L

Q
A

b)

DAC

Original

Retrained

Spherical VQ

κ=0

κ=1

κ=2

Fig. 4: Main figure (a): Speech quality (estimated by POLQA) vs. bitrate for different configurations when retraining DAC.
Subfigure (b): Difference scores (∆POLQA) between the four retrained models and the original DAC model – a positive
difference indicates an improvement over the original DAC model.

indexing, codebook training limited to one gain optimization
per quantization stage.

An informal subjective RefAB test was conducted with 5
experts, comparing the retrained DAC model and proposed
model with lattice VQ in all stages (κ = 0) on the 36 speech
test items. As audio quality is close to transparency when
using Kmax = 9 quantization stages, the RefAB test was
performed at a bitrate corresponding to 3 quantization stages.
At this bitrate, the audio quality is still good but there are
some artefacts in the two tested systems. Subjects confirmed
that the quality of the two systems is equivalent: there were
no significant statistical differences (for all items and overall).

C. Discussion on complexity and storage requirements

The computational complexity of RVQ is given by code-
book search at encoding (estimated to approx. 25, 600 op-
erations per codebook stage) and table look-up at decod-
ing (negligible). For RE8 spherical VQ at 10 bits (with a
single leader), this complexity is reduced to approx. 100-
200 operations per stage; search is limited to sorting the
absolute vector, applying signs and inverting the permutation;
indexing and deindexing may also be dramatically simplified
as this boils down to indexing the signed permutations of
[3, 1, . . . , 1]. The Kmax = 9 RVQ codebooks Ck require
storing 1024× 8× 9 = 73728 values; the RE8 spherical VQ
at 10 bits is based on a single leader – the search and indexing
algorithms can be easily hard-coded for this case, and there is
virtually no codebook storage required, only 9 gains gk have
to be stored.

V. CONCLUSION

In this work, we proposed to replace RVQ in the DAC neural
audio codec by spherical algebraic VQ. The study shows that
the performance obtained with spherical lattice VQ is very
promising. In future work we plan to test other codebook rates
than 10 bits per RVQ stage.

ACKNOWLEDGMENT

The authors thank Pierrick Philippe (Orange Research in
Rennes, France) for discussions and proofreading.

REFERENCES

[1] T. Labiausse, L. Mazaré, E. Grave, P. Pérez, A. Défossez, and N. Zeghi-
dour, “High-fidelity simultaneous speech-to-speech translation,” 2025.

[2] J. Copet et al., “Simple and controllable music generation,” in Proc.
NeurIPS, 2023.

[3] N. Zeghidour et al., “SoundStream: An End-to-End Neural Audio
Codec,” IEEE/ACM Trans. TASLP, 2021.

[4] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity neural
audio compression,” Transactions on Machine Learning Research, 2023.

[5] R. Kumar et al., “High-fidelity audio compression with improved
rvqgan,” in Proc. NeurIPS, 2023, pp. 27 980–27 993.

[6] Y.-C. Wu et al., “Scoredec: A phase-preserving high-fidelity audio codec
with a generalized score-based diffusion post-filter,” in Proc. ICASSP,
2024.

[7] S. Welker et al., “Flowdec: A flow-based full-band general audio codec
with high perceptual quality,” in Proc. ICLR, 2025.

[8] A. Gersho and R. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 1991.

[9] F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen, “Finite scalar
quantization: VQ-VAE made simple,” in Proc. ICLR, 2024.

[10] L. Yu et al., “Language model beats diffusion - tokenizer is key to visual
generation,” in Proc. ICLR, 2024.

[11] J.-P. Adoul, “La quantification vectorielle des signaux: approche
algébrique,” in Ann. des télécom., vol. 41, no. 3, 1986, pp. 158–177.

[12] S. Ragot et al., “Low-complexity multi-rate lattice vector quantization
with application to wideband TCX speech coding at 32 kbit/s,” in Proc.
ICASSP, 2004.

[13] M. Sabin and R. Gray, “Product code vector quantizers for waveform
and voice coding,” IEEE Trans. AASP, vol. 32, no. 3, pp. 474–488, 1984.

[14] C. Lamblin and J.-P. Adoul, “Algorithme de quantification vectorielle
sphérique à partir du réseau de Gosset d’ordre 8,” pp. 172–186, 1988.

[15] H. Cohn, “Table of spherical codes,” https://spherical-codes.org/.
[16] D. Sakrison, “A geometric treatment of the source encoding of a Gauss-

ian random variable,” IEEE Trans. on Inf. Th., vol. 14, no. 3, 1968.
[17] T. Ericson and V. Zinoviev, Codes on Euclidean spheres. Elsevier,

2001.
[18] J. Conway and N. Sloane, Sphere packings, lattices and groups, 3rd Ed.

Springer, 1998.
[19] J.-P. Adoul and M. Barth, “Nearest neighbor algorithm for spherical

codes from the Leech lattice,” IEEE Trans. Inf. Theory, vol. 34, no. 5,
pp. 1188–1202, 1988.

[20] J. Schalkwijk, “An algorithm for source coding,” IEEE Trans. Inf.
Theory, vol. 18, no. 3, pp. 395–399, 1972.

[21] T. Muller, S. Ragot, V. Barriac, and P. Scalart, “Evaluation of objective
quality models on neural audio codecs,” in Proc. IWAENC, 2024.

[22] ITU-T Rec. P.863, “Perceptual objective listening quality prediction,”
Mar. 2018.

[23] Descript, “DAC,” https://github.com/descriptinc/descript-audio-codec.
[24] J. Richter et al., “EARS: An anechoic fullband speech dataset bench-

marked for speech enhancement and dereverberation,” in ISCA Inter-
speech, 2024, pp. 4873–4877.

20

