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Abstract—Neural Audio Codecs have become powerful tools
for audio processing, offering learnable compression methods
that balance high compression ratios with perceptual quality.
This paper introduces a signal processing system that utilizes the
latent space of Neural Audio Codecs for signal reconstruction and
feature extraction in edge computing environments. We design
a lightweight NAC encoder inspired by SoundStream, optimized
for resource-constrained devices. Our evaluation on speech recog-
nition and classification tasks highlights the system’s adaptability
to Internet of Things applications. The proposed design achieves
a 40x audio waveform compression with only a 3% increase in
word error rate for transcription tasks and a 94.6% accuracy
on end-to-end intent classification, demonstrating its practicality
for real-world deployment. Additionally, the encoder operates
at a real-time factor of 1.77 on an ARM Cortex-A53 using a
single thread for intra/inter-operation, ensuring efficient real-time
compression and 12-8 times less energy consumption compared
to the original model encoder.

Index Terms—Edge Al, Internet of Things, Speech Processing,
Neural Audio Codecs

I. INTRODUCTION

In the era of the Internet of Things (IoT) and pervasive,
distributed intelligence, speech processing has become a key
enabler for numerous applications. Advancements in genera-
tive Al have further accelerated the adoption of voice-driven
technologies, powering smart assistants, real-time transcription
services, hands-free human-computer interaction, and acces-
sibility solutions. Thus, transmitting high-quality speech data
under constrained bandwidth conditions has become a pressing
challenge. Neural Audio Codecs (NACs) are a promising
solution in this context, implementing learnable compression
algorithms that achieve superior compression ratios while
maintaining high perceptual quality and, compared to tradi-
tional coding methods [1], are capable of extracting non-linear
and global information from the audio signal.

NACs have progressed considerably from initial autoen-
coder architectures. EnCodec [2] established a foundation
with residual vector quantization and a loss balancer to
stabilize training, rather than focusing on adversarial train-
ing. SoundStream [3] introduced a GAN-based end-to-end
streaming neural audio codec optimized for general audio,
using residual vector quantization to support multiple bitrates.
Subsequently, DAC [4] improved upon EnCodec by addressing
codebook collapse and modifying activation functions to better
reconstruct periodic signals like speech and music, while
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AudioDec [5] provided a real-time, streamable neural audio
codec with strong performance across compression, latency,
and reconstruction quality. Contemporary research has prior-
itized computational efficiency. HILCodec [6] is noteworthy
for its lightweight, time-domain convolutional architecture,
adapted from SEANet, with optimized quantization strategies
and a latency-aware design. Xu et al. [7] address IoT-specific
constraints by achieving intelligible speech communication at
0.5 kbps using an intra-lstm-based design and power-efficient
inference optimized for NBIoT deployments.

While their primary advantage lies in enabling high-fidelity
reconstruction, many downstream tasks—such as automatic
speech recognition or audio-based classification—do not nec-
essarily require perfect audio quality, but rather an intelligible
representation that retains relevant features. Instead, perform-
ing compression locally at the very edge brings a significant
advantage by drastically reducing bandwidth requirements,
enabling efficient data transmission and real-time processing
in constrained environments.

To the best of our knowledge, no study has explored NAC
deployment on edge devices or evaluated their performance
with downstream applications at the gateway level, high-
lighting a gap between theoretical innovation and practical
implementation. For this reason, this work presents the de-
sign and implementation of a signal processing system that
exploits the dual nature of NACs’ latent space representation,
enabling both signal reconstruction and feature extraction in
resource-constrained edge computing scenarios. The system
architecture implements a lightweight NAC encoder inspired
by SoundStream [3], with optimizations for efficient signal
processing on edge devices. Our implementation encompasses
the full signal processing pipeline, from acoustic sensing
through compression to gateway processing, with particular at-
tention to computational efficiency and processing constraints.
The processing chain is evaluated across two distinct speech
processing tasks: audio reconstruction for speech recognition
and direct classification using the compressed latent repre-
sentations. The testbed enables systematic characterization of
the signal processing chain and performance evaluation at
various levels of latent space residual transmission. This dual-
purpose architecture showcases the versatility of NAC-based
processing in audio reconstruction and feature analysis, while
efficiently utilizing resources at the edge.
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II. SYSTEM ARCHITECTURE AND METHODOLOGY

This section details the experimental setup and testbed,
including the developed models, system architecture, and key
performance metrics, focusing on performance degradation at
different bitrates.

A. General Overview

The system architecture, illustrated in Figure 1, implements
a two-tier edge computing infrastructure. The first tier consists
of distributed edge nodes, implemented on Raspberry Pi
3B+ platforms, which are selected to demonstrate function-
ality on resource-constrained hardware commonly found in
practical deployments. These nodes, equipped with MEMS
microphones for audio data acquisition, perform initial prepro-
cessing before publishing the captured audio data to a desig-
nated ’audiolog’ channel, along with device identification and
temporal metadata for traceability. The second tier comprises
gateway devices based on Nvidia Jetson Xavier platforms,
which serve as the intermediate computational layer. These
devices perform computationally intensive operations, primar-
ily running transformer-based models for audio processing,
while also facilitating communication between edge nodes
and cloud services when additional processing capabilities
are required. Communication between system components is
managed through a MQTT broker, which can be hosted on the
gateway or on a separate dedicated device. MQTT’s publish-
subscribe model enables flexible system scaling allowing us
to add or remove devices without reprogramming the gateway.
The MQTT broker handles data transmission with configurable
Quality of Service (QoS) levels to ensure appropriate reliabil-
ity based on application requirements.

fBW MQTT Broker % b

(Mosquitto)
—_—

audiolog @")5)
device #1 / \

|
audiolog
device #2

Fig. 1. System architecture: 2-tier edge computing infrastructure, with dis-
tributed edge nodes (Raspberry Pi 3B+) for audio capture and preprocessing,
and gateway devices (Nvidia Jetson Xavier) for heavy computation.

B. Tiny NAC Encoder

Our work focused on developing a Tiny NAC Encoder
optimized for edge deployment. We based our architecture
on SoundStream [3], a fully convolutional neural audio codec
that leverages 1D convolutions—operations widely optimized
on edge-oriented deep learning frameworks. SoundStream’s
architecture incorporates two key elements: a discriminator-
based loss trained through adversarial learning to preserve
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perceptual quality and learn phase information, and Resid-
ual Vector Quantization (RVQ) for precise bitrate control.
Building upon this foundation, we prioritized minimizing the
encoder’s computational requirements while maintaining audio
fidelity suitable for downstream processing. To achieve this
optimization, we redesigned the encoder using PhiNets [8],
a neural architecture that builds upon inverted residual blocks
[9]. PhiNets have demonstrated remarkable efficiency in audio
processing tasks [10]-[12], offering a flexible architecture
controlled by four key parameters: expansion factor, number
of convolutional blocks, shape factor, and width multiplier.
By implementing a causal variant of PhiNet, we achieved
substantial model compression, reducing the encoder size from
I9MB to 2MB. This optimization involved the following
architectural modifications, where C is the number of channels
and D is the latent space dimension:

TABLE I
ENCODER CONFIGURATIONS COMPARISON

Configuration C D Stride Sequence
Original (19MB) 32 128  [2, 4, 5, 8]
Optimized (2MB) 32 256 4, 5, 16]

We further optimized memory usage by reducing the RVQ
codebook from 1024 to 256 entries, resulting in a 4x reduction
in memory requirements and a corresponding decrease in per-
sample bitrate (8 bits per codebook index). For a complete
evaluation, we trained the model using 16 codebooks in the
quantization process, allowing the analysis of the quantization
effects on the performance of downstream tasks. The complete
codebook ensemble requires approximately 22MB of memory,
making the encoder and RVQ weight around 24.5 MB.

C. Downstream Models

We evaluated our compression system on two downstream
tasks: Automatic Speech Recognition (ASR) and Speech Intent
Classification. For ASR, we assessed the quality of our recon-
structed audio by transcribing it using Whisper [13], a widely
adopted ASR model. For the Intent Classification task, we
utilized the compressed latent space as direct input to a model.
Specifically, we removed the convolutional feature extraction
backbone from Wav2Vec2 (base 960h) and fed the transmitted
compressed embeddings directly to the transformer compo-
nent, essentially using our Tiny NAC Encoder as a feature
extractor. During fine-tuning on the FluentSpeechCommands
dataset [14], we kept the NAC encoder frozen and only trained
the transformer blocks, allowing us to evaluate how well the
pre-compressed latent representations preserve semantic infor-
mation for classifying 31 different speech command intents.
Both models have been chosen in a configuration suitable for
deployment on the system defined in the previous sections.

III. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, we will delve into the implementation details
from an Edge Node and Gateway perspective. Finally, we will
describe the models’ training setups and define the metrics we
benchmarked to characterize the system.
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Fig. 2. Edge node processing pipeline showing audio capture, VAD, speech
segment buffering, compression by Tiny NAC Encoder and data transmission
to the broker. Multithreading optimizes the pipeline for efficiency.

The edge node processing pipeline is depicted in Figure 2.
Audio is captured using an I2S microphone in S16LE format
at 16 kHz and subsequently processed through the proposed
pipeline. Initially, a Voice Activity Detector (SileroVAD!')
analyzes the incoming audio, classifying each 512-sample
segment as either speech or non-speech. Segments identified as
speech—i.e., those exceeding a predefined probability thresh-
old determined during a tuning phase—are stored in a FIFO
buffer. Once the buffer accumulates one second of speech
data, it is dequeued and compressed using the Tiny NAC
Encoder. Compression is achieved via RVQ, resulting in a 40x
compression ratio when all quantization tables are utilized. The
quantized latent representations are subsequently transmitted
to the broker. The implementation leverages the multithreading
capabilities of the RPi3B+ to optimize pipeline efficiency. One
thread manages audio capture, voice activity detection, and
buffering, while a second thread handles dequeuing, compres-
sion, and transmission once the buffer contains at least 16,000
samples. Conditional variables are employed to synchronize
buffer operations, ensuring that data is either enqueued or
dequeued without conflicts.

B. Gateway

Figure 3 illustrates the gateway processing pipeline, which
can operate in two distinct configurations. In configuration A,
the RVQ module utilizes indices to reconstruct the encoder’s
latent space representation. A FIFO buffer maintains one
second of latent space representations up to 10 seconds, which
are then processed through the NAC decoder to reconstruct
the audio waveform. Finally, the Whisper model performs
speech-to-text transcription on the reconstructed audio data.
Configuration B bypasses the NAC decoder entirely, instead
feeding the encoder’s latent space representations directly
into a modified version of Wav2Vec. This modified Wav2Vec
implementation, which excludes the feature extraction compo-
nent, performs intent classification on the input data.

Thttps://github.com/snakers4/silero-vad
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C. Experimental Setup

The specifications of the edge node and gateway are pre-
sented in Table II. The edge node operates on Raspberry PiOS
6.6 (64-bit), while the Jetson platform utilizes JetPack5.

TABLE 11
HARDWARE SPECIFICATIONS OF EDGE NODE AND GATEWAY

Specification Raspberry Pi 3B+ Jetson AGX Xavier

Processor Quad-core Cortex-A53 @  8-core ARM v8.2 + 512-
1.4 GHz core Volta GPU
Memory 1 GB LPDDR2 16 GB LPDDR4x @ 136.5

GB/s

1) NAC Training Process: The NAC training process was
conducted over 35,000 steps with a batch size of 16, using
the LibriTTS360 dataset for training and the Test-clean set for
evaluation. Initially, training was performed for approximately
25,000 steps using an RVQ of size 1024. Subsequently, the
RVQ was replaced with a size 256 RVQ for the remaining
10,000 steps. Due to computational limitations, training was
halted after 35,000 steps. The training setup is analogous
to the original SoundStream training, combining a vector
quantization-based neural audio codec with adversarial and
reconstruction losses.

2) Wav2Vec Finetuning: The Wav2vec finetuning was per-
formed for 100 epochs, using an AdamW Optimizer, Cosine
Annealing Learning Rate Scheduler and a 3e-5 learning rate.
The audio is first processed in the TinyNAC Encoder and
quantizer models at 1s chunks and then fed to a projection
Linear Layer, which projects the features of shape 256 to 768
(Wav2Vec size); the projected features are finally fed in the
Wav2Vec Transformer blocks and in a classification head.

3) Deployment: For deployment, the trained model is con-
verted to ONNX format and executed using ONNX Runtime
on the RPi. Mosquitto is used as the MQTT broker, while
Hydra is employed to manage configurations in both training
and deployment setups. Additionally, Hugging Face and Ope-
nAl Whisper are used to download the pre-trained weights for
Whisper and Wav2Vec.

All the training scripts, metrics and deployment packages
are available in a public GitHub organization?.

D. Evaluation Metrics

Our system evaluation employs both signal quality and task-
specific performance metrics.

1) Signal Quality Metrics: PESQ (-0.5 to 4.5, higher better)
assesses perceptual quality, STOI (-1 to 1, higher better)
quantifies intelligibility, and MCD measures spectral distortion
(lower is better).

2) Speech Recognition Performance: WER and CER are
evaluated using Whisper across multiple residual quantization
levels (4, 8, 12, 16 tables), tested on both raw and recon-
structed audio.

3) Intent Classification Performance: Classification accu-
racy is analyzed relative to quantizer count.

Zhttps://github.com/orgs/Exploiting-NACs/repositories
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Fig. 3. Gateway processing pipeline, with 2 configurations: Config A. The NAC decoder processes the latent space for audio reconstruction, followed by
speech-to-text transcription using Whisper. Config B. bypasses the NAC decoder and uses modified Wav2Vec for intent classification.

4) Deployment Efficiency: Model memory footprint on
Raspberry Pi and Real-Time Factor (RTF)/inference time
are measured under both automatic thread management and
single-thread operation, simulating multi-model deployment
constraints.

IV. RESULTS AND DISCUSSION
A. Signal Quality Metrics

The training process was completed after 35,000 steps, as
outlined in the experimental setup, with the primary goal
of ensuring that the reconstructed audio remained suitable
for downstream tasks. Evaluation on the LibriTTS test-clean
dataset yielded a PESQ score of 1.35, an STOI score of 0.76,
and an MCD score of 14.63. The PESQ score indicates mod-
erate perceptual quality, suggesting some audible distortions,
but still within a range that is acceptable for use. Similarly,
the STOI score of 0.76 indicates that the reconstructed speech
retains a reasonable level of clarity. However, the MCD score
of 14.63 points to significant spectral distortion, reflecting
a notable divergence from the reference audio in terms of
spectral characteristics. This distortion is likely a result of
early stopping, which may have prevented full convergence
and hindered optimal spectral fidelity. While the perceptual
and intelligibility metrics show that the reconstructed audio
remains functional for downstream applications, the elevated
MCD score highlights the potential benefit of further refining
the model, possibly through extended training, to improve
spectral accuracy and reduce distortion.

B. Speech Recognition Metrics

Table III and Figure 4 present the WER and CER across
various quantizer settings, illustrating the impact of compres-
sion on transcription accuracy. In real-world speech recogni-
tion applications, a WER below 10% is generally considered
acceptable for reliable performance.

At 6.4 kbps (16q) and 4.8 kbps (12q), the WER increases
from baseline 4% to 7.6% and 8.4%, respectively, while
the CER increases from 1.3% to 3.5% and 3.7%. These
values remain within the acceptable range, suggesting that
such compression levels can be deployed without severely
impacting transcription quality. At 3.2 kbps (8q), WER reaches
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9.4% and CER 4.4%, nearing the upper limit of usability.
The most significant degradation occurs at 1.6 kbps (4q),
where WER jumps to 22% and CER to 12.9%, indicating
substantial information loss and making accurate transcription
impractical. While bitrates of 6.4 kbps and 4.8 kbps (<40x
compression) maintain intelligible speech with moderate WER
increases, further compression below 3.2 kbps results in severe
degradation, surpassing the acceptable threshold for real-world
deployments. These findings emphasize the trade-off between
compression efficiency and ASR performance, highlighting the
need to balance bitrate reduction with transcription accuracy
in practical applications.

TABLE III
WER/CER W.R.T. NUMBER OF QUANTIZERS
WER/CER 16q 12q 8q 4q
(6.4kbps) (4.8kbps) (3.2kbps) (1.6kbps)
Baseline (WER/CER) 0.04/0.013
WER 0.076 0.084 0.094 0.22
CER 0.035 0.037 0.044 0.129
T T T T
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Fig. 4. WER and CER across different bitrates, with baselines. The metrics
remain below 10% error rate across bitrates higher than 1.6kbps, making them
suitable for deployments in real world scenarios.



C. Intent Classification Metrics

Table IV presents the intent classification accuracy across
varying numbers of quantizers. The baseline model, which
fine-tunes the entire Wav2Vec framework including its feature
extraction backbone, achieves the highest accuracy of 99.70%.
In contrast, all other results (quantized configurations) are
obtained while keeping the feature extractor frozen. As the
number of quantizers is reduced (from 16q to 4q), a corre-
sponding decline in accuracy is observed, with the 4q con-
figuration (1.6 kbps) yielding the lowest accuracy at 85.10%.
While this trend aligns with expectations, it is noteworthy that
halving the transmission rate results in only an approximate
3% reduction in accuracy. These findings demonstrate that the
intent classification accuracy remains sufficiently robust for
practical applications, even at lower bitrates, while maintaining
the feature extractor in a frozen state for compatibility with
other tasks, such as configuration A at the gateway level.

TABLE IV
INTENT CLASSIFICATION ACCURACY W.R.T. NUMBER OF QUANTIZERS

Quantizers Intent Classification Accuracy
Baseline 99.70%
16q (6.4kbps) 94.58 %
12q (4.8kbps) 93.95%
8q (3.2kbps) 91.87%
4q (1.6kbps) 85.10%
TABLE V
ON DEVICE BENCHMARKS
MODELS: pretrained tiny encoder
Parameters 17.4M 2.5M
Memory (MB) 85.9 24.5
MACC (M) 4.21 1.05
Inference time auto (ms) 3376 392
Inference Time 1 thread (ms) 6594 567
RTF auto 0.3 2.56
RTF I-thread 0.16 1.77
Energy auto/I-thread 4.1/6.0 mWh  0.5/0.49 mWh

D. Deployment efficiency metrics

Table V compares the deployment efficiency metrics be-
tween our approach (tiny encoder) and the chosen variant
of SoundStream (pretrained) model from the Python library.
The tiny encoder features fewer parameters (2.5M vs. 17.4M)
and lower memory usage (24.5 MB vs. 85.9 MB), making it
more suitable for resource-constrained devices. It also achieves
faster inference times (392 ms vs. 3376 ms in auto mode) and
a lower RTF (2.56 vs. 0.3). In contrast, the pretrained model,
has higher computational complexity (4.21 MACC vs. 1.05)
but may offer better performance at the cost of higher resource
consumption. Moreover, as highlighted in the last row of the
table, a 600 Mhz clock benchmark on Rpi3 revealed that our
tiny model implementation is 8-12 times more energy efficient
on 1 thread and multi-thread configurations, respectively. En-
ergy consumption has been reported for inference on 1 hour
of audio data. Both models were exported in ONNX format
and tested on a RPi3 using a I-second audio clip, with 10
warm-up trials followed by 100 benchmarking trials.
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V. CONCLUSION

This work demonstrates that NACs provide an efficient
solution for edge-to-gateway compression and downstream
processing, particularly for tasks that rely on speech-relevant
features rather than exact speech reconstruction. Notably,
NACs serve both as compression algorithms and feature ex-
tractors, enabling a wide range of downstream applications
and making the system highly adaptable. Our compact NAC
design results in only a minor performance trade-off, with
word error rates (WER) of 7.6% and 4% for reconstructed
and original audio, respectively. Additionally, the lightweight
encoder supports real-time processing on an ARM Cortex-
AS53, achieving a real-time factor of 1.77 in a single-thread
setup—significantly improving energy efficiency compared to
the original, more computationally demanding model.
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