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Abstract—In this paper, we evaluate existing state-of-the-art
approaches to enrollment utterance aggregation, while proposing
alternative methods to improve the effectiveness of speaker
verification (SV) systems, when dealing with multiple utterances
of the target speaker during the enrollment phase. We investigate
multiple facets of the problem, including text-dependent and
text-independent scenarios, as well as near-field and far-field
speech. Additionally, we assess the impact of several enrollment
utterance augmentation methods on aggregation quality. Our
research evaluates embedding aggregation approaches, ranging
from straightforward techniques such as calculating the average,
max and median, to more advanced attention-based models. We
propose a modified attention-based architecture that outperforms
other techniques by 5 percentage points of Equal Error Rate
(EER) in the performance of the verification system. Moreover we
suggest a data augmentation method that can improve presented
aggregation methods by almost 4 percentage points EER.

Index Terms—speaker verification, enrollment, speaker embed-
ding aggregation, attention, augmentation

I. INTRODUCTION

The swift development of voice assistants confirms the
trend towards hands-free human-computer interaction solu-
tions based on speech, applied in smart homes, smartphones,
televisions, and other contemporary technologies integrated
into our daily lives. Very often, such systems employ speaker
verification modules to provide a personalized user experience
and advanced security features. In recent years, a large amount
of research in SV has been conducted. The current state-of-
the-art solutions are almost exclusively based on deep neural
networks (DNN) [1]–[4] and outperform the formerly popular
i-vector-based systems. In a typical SV system, new users
are required to provide a voice sample during the enrollment
phase, which serves as a model voiceprint for verification.
Most current speaker verification systems require more than
one utterance during enrollment, often three or five short
utterances. This study focuses specifically on situations where
there are five enrollment embeddings of a single speaker. We
aim to find an effective way of combining these five utterances
to produce the most exemplary representation of the speaker
using embeddings generated by ECAPA-TDNN [5] a state-of-
the-art speaker verification model. Moreover, we investigate
how augmentation of the enrollment data will impact the

effectiveness of embedding aggregation methods. We address
this in the context of two types of enrollment utterances:

1) text-dependent scenarios, limited to a small set of words
or phrases [6],

2) text-independent scenarios, where arbitrary phrases are
spoken in each utterance [6].

In addition, we recognize that speaker verification systems
should not be limited to near-field scenarios, but must also
work effectively at greater distances, such as in a smart
home environment. For this reason, we have distinguished two
additional data categories:

1) near-field data, recorded by close talking microphone
[7],

2) far-field data, the microphone is more than 1m away
from the speaker [7].

Contribution: We present a comprehensive evaluation of
techniques for merging embeddings in text-dependent and text-
independent scenarios, across both near and far-field environ-
ments. What is more, we compare various audio augmentation
techniques and evaluate the impact of enrollment augmentation
methods during train and test time on the effectiveness of
the aggregation system. Additionally, we propose a simple
modification to a state-of-the-art attention back-end model
[8], which is to replace the second multi-attention block with
max or average pooling. This improvement not only enhances
performance but also simplifies the architecture and decreases
model size by 10% and parameter count from 160k to 148k.

II. RELATED WORK

The existing research on speaker verification systems most
often does not address scenarios involving multiple enrollment
utterances [5], [9]–[11]. In [12], the authors only explore
the influence of averaged enrolled embeddings on verification
system results. They carry out experiments with text-dependent
and text-independent datasets, although they focus solely on
the multiple enrollment scenario in relation to text-independent
data. Averaging enrollment embeddings has been used in
SV for more than a decade now even before the emergence
of DNN-based systems in the SV field [13], [14]. In [8],
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an attention-based back-end is introduced for SV systems
with multiple utterances. However, the study solely reports
findings for the text-independent scenario, and no details
are provided regarding dataset construction for the multiple
enrollment scenario. Speaker verification is related to the
face verification problem - in both situations, we need to
extract a representative feature vector, that will later serve
as reference for comparisons. Additionally, the methods for
extracting the representative embedding in both domains are
very similar [15] [16]. In [17] authors state that the most
common aggregation techniques are average pooling and max
pooling. In terms of data augmentation, most of the current
work focuses on augmenting data to improve SV embedding
extraction model as in [18] [19] [20]. This approach does
not address the main objectives of our work as we want to
concentrate on enhancing embedding aggregation methods.
In [21] authors use augmentation to generate extra data to
empower speaker enrollment. This research states that by
augmenting only enrol data, one can improve verification
results by 0.5 Equal Error Rate (EER).

III. PROPOSED METHODS

The primary goal of this work is to find an improved
approach for creating a representative speaker embedding from
five enrollment utterances. As a baseline, we first evaluated
straightforward techniques: average, max, and median pool-
ing. These methods have appeared in studies focusing on
multi-utterance enrollment [12], [17]. We then extended our
investigation to attention-based approaches for speaker feature
aggregation.

A. Statistical Aggregation

We explored three basic techniques to produce a single
representative embedding from five enrollment embeddings:
averaging, max pooling, and median pooling. Each of the
five embeddings has the same dimension, denoted Rd. In
all three methods, a new vector is generated by combining
the corresponding elements from each of the five enrollment
embeddings:

• Averaging takes the mean value across the five embed-
dings at each dimension.

• Max pooling selects the highest value at each dimension.
• Median pooling selects the median value at each dimen-

sion.

B. Attention-Based Method

Attention-based methods have been shown to improve ag-
gregation in multi-utterance enrollment [8]. They leverage
scaled dot-product self-attention and feed-forward layers to
capture relationships among multiple enrollment embeddings.
Figure 1 shows the overall architecture, including our proposed
simplification.

First, we concatenate the five enrollment embeddings (each
in Rd) from the same speaker into a single matrix E of
size 5 × d. Next, E is passed through a multi-head scaled
dot-product self-attention mechanism [22]. This operation is

repeated M times (once per attention head), and the outputs
are merged back into a single hidden matrix H ∈ R5×d.
Residual connections, layer normalization, and a feed-forward
sub-layer are included, as described in [22].

Following this initial attention block, the original architec-
ture [8] applies a second multi-head attention layer. In our
simplified approach, we replace that second attention module
with either average or max pooling across the five rows of
H . This pooling produces a single representative embedding
h ∈ Rd.

Finally, we compute a cosine similarity score between the
pooled enrollment embedding and a test embedding s ∈ Rd.
While [8] reported results only when using both attention
blocks, our experiments (see Section VI) show that replacing
the second multi-head block with pooling not only streamlines
the architecture but also yields superior results in all tested
conditions.

IV. DATASETS

The availability of datasets tailored explicitly for speaker
verification tasks is limited, especially when addressing sce-
narios that involve the enrollment phase in text-dependent
contexts. As a result, the selected datasets had to undergo
essential preprocessing steps, the details of which will be
elaborated upon in this subsection.

To conduct experiments in text-dependent scenarios, we
used the Hi-Mia dataset, as described in [7]. This dataset
includes audio recordings of 340 individuals. The specified
keyword in this dataset is ’Hi, Mia’ in English, and ’ni hao, mi
ya’ in Chinese. In dataset preparation, any utterance exceeding
a 2-second duration was excluded, and the remaining ones
were extended with silence to ensure a consistent length of
2 seconds. The recordings, following the dataset authors’
guidelines, were divided into near-field and far-field segments.
Dataset statistics are shown in Table I

TABLE I
HI MIA DATASET POST-PROCESSING STATISTICS.

near-field far-field

Number of training speakers 254 254
Number of test speakers 44 44
Number of train utterances 19,586 400,000
Number of test utterances 3,263 159,652

The near-field audio recordings were captured using a close-
talking microphone positioned 25 cm from the speaker. In
contrast, the far-field utterances were captured using six 16-
channel circular microphone arrays, positioned around the
individual at distances of 1m, 3m, and 5m. Although the signal
is multi-channeled we extracted and used mono-channel audio.
Distinct enrollment sets were established for both the near and
far-field test sets, using test audio files. For each speaker in
the test set, five randomly selected files were chosen to create
their respective enrollment sets.

The VoxCeleb dataset [23] is a collection of audiovisual
content, carefully curated from interview videos available on
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Fig. 1. Attention-based architecture. H is the hidden matrix output of the first multi-head attention layer, h1 is derived from an average or max pooling
operation on H , h2 is obtained from a second multi-head attention layer, and s is a test speaker embedding.

the YouTube platform. It is gender balanced and covers a wide
range of backgrounds, including different ethnicities, regional
accents, professional roles, and age groups. For the speaker
verification task, the dataset underwent a series of preparatory
steps. First, all audio files were split into 2-second segments,
with any remaining fragments from the last split that fell
below the 2-second mark excluded. The enrollment set was
then constructed by selecting five different utterances from
one of the interviews for each speaker test data. Any excess
audio files from the interview chosen for enrollment were
intentionally omitted to avoid their inadvertent inclusion in
subsequent training and testing phases. Dataset statistics are
shown in Table II.

TABLE II
VOXCELEB 1&2 DATASET POST-PROCESSING STATISTICS.

VoxCeleb 1&2

Number of training speakers 7,205
Number of test speakers 40
Number of train utterances 4,299,065
Number of test utterances 17,097

A. Data augmentation

Inspired by [21] we decided to apply augmentation tech-
niques directly on enrollment and test samples to enrich the
speaker representation for more robust aggregation. For sim-
ple aggregation techniques only enrollment and test samples
were augmented and for attention-based methods we also
augmented the aggregation module training data. The aug-
mentation methods we focused on were Gaussian Noise, Air
Absorption (lowpass-like filterbank with variable octave), Gain
(multiply the audio by a random amplitude factor to reduce or
increase the volume), Bitcrush (reducing the signal to a given
bit depth), Low Pass Filter, High Pass Filter, and Band Pass
Filter. All augmentation techniques were implemented using
python libraries Pedalboard [24] and Audiomentations [25]. To
perform more experiments on data augmentation we decided to

use a 5% subset of the Voxceleb training dataset therefore there
is a difference in the EER value between Voxceleb results.
This subset was used only for augmentation experiments, other
experiments are carried out using the whole dataset.

V. EXPERIMENTAL SETUP

Each end-to-end speaker verification system consists of
two primary components: a model responsible for extracting
speaker embeddings from audio files, and a scoring mechanism
that calculates the similarity between two vectors - the target
speaker embedding and the test embedding. As the speaker
encoder, we employed the pre-trained ECAPA-TDNN model
1 from the Speechbrain library [26]. To ensure more robust
results in text-dependent scenarios, we fine-tuned ECAPA-
TDNN, pre-trained on the full Voxceleb dataset, on both the
near-field and far-field subsets of the Hi Mia dataset with
cosine similarity was used for scoring. Our evaluation metrics
included the widely accepted Equal Error Rate (EER) and the
Minimum Detection Cost Function (minDCF), both measuring
the effectiveness of the speaker verification systems. We report
minDCF at priors of 0.01 and 0.001, reflecting scenarios in
which the genuine speaker is assumed to appear with a 1% or
0.1% chance, respectively. The attention back-end architecture
was trained separately for each scenario using the repository1.
For the aggregation module we employ the same contrastive
training strategy as in [8]. Each training was conducted using
stochastic gradient descent with momentum, with a learning
rate set to 0.01, binary cross-entropy loss, and employing two
attention heads. Text-independent scenario experiments were
conducted using the VoxCeleb dataset and the best results were
obtained after 10 epochs, with a batch size of 128 speakers
and 5 enrollment utterances per speaker. We examined the
text-dependent scenario using the Hi Mia dataset, considering
both near and far-field audio types. Training sessions with the
best results were conducted for 20 epochs, with a batch size
of 20 speakers and 5 enrollment utterances per speaker. In the

1https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb

28



evaluation process, we used a predefined list of enrollment and
test embeddings pairs, with negative pairs denoted by 0 and
positive denoted by 1, depending on whether they originated
from a different or the same speaker.

VI. RESULTS

To validate our findings, we conducted a series of ex-
periments. The most promising results are summarised in
the Tables III, V, and VII. Results for the augmentation
experiments are in the Tables IV, VI and VIII. Table III
illustrates the performance of each method on the Hi Mia
near-field subset. Notably, using attention-based techniques
substantially enhances EER, with a reduction of almost 4 p.p.
(percentage points) when compared to the simple average.
Furthermore, slight modifications to the attention structure led
to a further decrease in EER by 0.5 p.p relative to the attention
technique presented in [8]. Table IV demonstrates how each
augmentation method impacts the EER for all aggregation
methods on the Hi Mia near-field subset. The best results
are obtained using Gaussian noise augmentation combined
with attention with max pooling aggregation outperforms the
baseline average by more than 5 p.p. Multiple augmentation
did not improve results.

TABLE III
RESULTS ON NEAR-FIELD HI MIA SUBSET.

Method
EER
(%)

minDCF
at 0.01

minDCF
at 0.001

Average 9.70 0.51 0.60
Median 9.83 0.52 0.61
Max 10.77 0.70 0.79
Attention I & II 6.55 0.52 0.75
Attention + avg 5.97 0.46 0.67
Attention + max 6.57 0.52 0.74

TABLE IV
AUGMENTATION EER (%) RESULTS ON NEAR-FIELD HI MIA SUBSET.

COLUMN HEADERS: AIR = AIR ABSORPTION, GAIN = GAIN, GAUS =
GAUSSIAN NOISE, HP = HIGH PASS FILTER, LP = LOW PASS FILTER, BP

= BAND PASS FILTER.

Method AIR BIT GAIN GAUS HP LP BP

Average 10.40 9.88 9.74 5.95 9.78 11.30 11.04
Median 10.50 9.88 9.87 6.24 10.04 11.53 11.32
Max 11.48 10.74 10.67 6.62 10.74 12.51 12.26
Attention I & II 5.86 6.01 5.97 4.41 6.56 5.50 6.55
Attention + avg 5.76 5.89 6.14 4.35 6.62 5.28 5.91
Attention + max 6.20 5.91 6.01 4.01 6.67 5.72 5.89

Similarly, the subset of the far-field Hi Mia produced results
consistent with the near-field environment, highlighting the
robustness of the attention-based approach for both near and
far-field scenarios, as shown in Table V. The improvement
achieved in this scenario is almost 5 p.p. in EER values when
compared to the average.

Results for the augmented Hi Mia far-field subset are not
as optimistic as in the near-field scenario. In far field scenario
speech is quieter than in the near-field scenario and already
noised by music/TV, so even subtle augmentation can drown

TABLE V
RESULTS ON FAR-FIELD HI MIA SUBSET.

Method
EER
(%)

minDCF
at 0.01

minDCF
at 0.001

Average 11.83 0.85 0.95
Median 11.96 0.86 0.96
Max 13.58 0.95 0.99
Attention I & II 7.03 0.66 0.85
Attention + avg 6.95 0.66 0.86
Attention + max 6.84 0.67 0.85

TABLE VI
AUGMENTATION EER (%) RESULTS ON FAR-FIELD HI MIA SUBSET.

Method AIR BIT GAIN GAUS HP LP BP

Average 11.35 11.36 11.21 8.69 9.23 12.13 10.22
Median 11.33 11.53 11.35 9.05 9.58 12.14 10.35
Max 13.09 13.26 13.21 11.47 12.14 13.96 12.77
Attention I & II 6.76 6.99 6.97 6.74 6.50 6.91 6.59
Attention + avg 6.64 6.91 6.96 6.72 6.59 6.98 6.57
Attention + max 6.62 7.03 6.97 6.59 6.59 6.97 6.52

out speech. No single best augmentation can be chosen.
Although for simple aggregation methods Gaussian Noise is
noticeably reducing the EER, for attention-based methods it
achieves similar results to other techniques. The changes we
carried out resulted in enhancements also on the VoxCeleb
dataset. The attention structures are less effective in this case,
with an EER increase of more than 0.1 p.p. compared to
the average and median techniques as shown in Table VII.
The best method in this case is the attention with average
pooling. Table VIII shows the results obtained by augmenting
enrollment and test data while evaluating the VoxCeleb dataset.
The difference between augmented and non-augmented data
is negligible. We attribute this to the fact that the VoxCeleb
training dataset was already heavily augmented.

TABLE VII
RESULTS ON VOXCELEB DATASET.

Method
EER
(%)

minDCF
at 0.01

minDCF
at 0.001

Average 1.71 0.21 0.39
Median 1.83 0.23 0.40
Max 4.62 0.41 0.58
Attention I & II 1.62 0.23 0.44
Attention + avg 1.61 0.22 0.40
Attention + max 1.66 0.23 0.43

TABLE VIII
AUGMENTATION EER (%) RESULTS ON VOXCELEB SUBSET.

CLEAN COLUMN: SUBSET WITHOUT AUGMENTATION.

Method CLEAN AIR BIT GAIN GAUS HP LP BP

Average 1.71 1.70 1.62 1.75 1.91 1.91 1.94 2.11
Median 1.83 1.78 1.79 1.82 2.00 2.01 2.05 2.05
Max 4.62 4.53 4.62 4.68 5.90 5.24 5.06 5.19
Attention I & II 3.44 3.45 3.36 3.46 3.37 3.68 3.57 3.86
Attention + avg 3.46 3.46 3.35 3.52 3.42 3.70 3.58 3.94
Attention + max 3.45 3.46 3.35 3.50 3.37 3.64 3.56 3.90

Single attention layer combined with mean or average
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pooling achieves the best results in all scenarios because
as we suspect double attention is limiting the significant
voice characteristic information from each speaker and adding
additional complexity, whereas single attention allowed to
keep more significant voice features, which then were average
or max pooled. The lowest EER was obtained in the Vox-
Celeb experiments, as expected due to the difference in the
amount of data between the VoxCeleb and Hi-Mia datasets.
This difference affected not only the training of attention-
based aggregation techniques but also the ability of ECAPA-
TDNN to extract representative embeddings from audio data.
Although we fine-tuned ECAPA with the Hi-Mia dataset, there
was not enough data to fine-tune it as well as it works for
the VoxCeleb dataset. We hypothesize the reason for the poor
results of augmentation on the Voxceleb and Hi-Mia far-field
subset is that these data are already noisy. VoxCeleb audio is
extracted from interviews - a real-life scenario, and Hi Mia far-
field was collected in a smart home environment - with TV
noise or music. The Hi Mia near-field subset was collected
with a high-quality close-talking microphone, so the recorded
sound was free of noise and distortion. We believe this is why
the enhancement techniques performed best in this scenario.

VII. CONCLUSIONS

This study addresses the rarely explored scenario of multi-
utterance enrollment in speaker verification systems, typical of
mobile or smart home devices. We conducted a comprehensive
investigation of text-dependent and text-independent settings
under both near-field and far-field conditions, and proposed
a simplified attention-based architecture. This model outper-
forms prior aggregation methods by up to 5 p.p. EER (relative
to [12]) while reducing the complexity of the network, making
it more suitable for resource-limited devices. Furthermore,
we show that applying augmentation to both enrollment and
test samples allows statistical and attention-based approaches
to achieve competitive results. As speech-based technologies
become increasingly commonplace, these findings underscore
the importance of efficient and accurate speaker verification
solutions.
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