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ABSTRACT

Recent advancements in speaker verification techniques
show promise, but their performance often deteriorates sig-
nificantly in challenging acoustic environments. Although
speech enhancement methods can improve perceived audio
quality, they may unintentionally distort speaker-specific in-
formation, which can affect verification accuracy. This prob-
lem has become more noticeable with the increasing use of
generative deep neural networks (DNNs) for speech enhance-
ment. While these networks can produce intelligible speech
even in conditions of very low signal-to-noise ratio (SNR),
they may also severely alter distinctive speaker characteris-
tics. To tackle this issue, we propose a novel neural network
framework that effectively combines speaker embeddings ex-
tracted from both noisy and enhanced speech using a Siamese
architecture. This architecture allows us to leverage com-
plementary information from both sources, enhancing the ro-
bustness of speaker verification under severe noise conditions.
Our framework is lightweight and agnostic to specific speaker
verification and speech enhancement techniques, enabling the
use of a wide range of state-of-the-art solutions without mod-
ification. Experimental results demonstrate the superior per-
formance of our proposed framework.

Index Terms— Speaker verification, speaker recognition,
speaker embedding, acoustic noise, noise robustness.

1. INTRODUCTION

Speaker verification aims to determine whether two audio
samples originate from the same speaker. Typical speaker
verification applications include voice authentication for per-
sonal smart devices, authenticating callers in call centers,
securing access in telephone banking, and law enforcement
investigations. Speaker verification systems rely on speaker
embeddings, which are high-dimensional features represent-
ing a speaker’s vocal tract characteristics and speaking style.
Once created, these embeddings can be compared to deter-
mine if two audio samples come from the same person [4, 5].
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Over the last decade, the superior feature extraction ca-
pabilities of deep neural networks (DNNs) have made them
the leading approach for speaker embedding. Among the pi-
oneering works in this area was the introduction of the Time
Delay Neural Network (TDNN) [6]. One of the most success-
ful architectures for speaker verification using this approach
was developed in [7]. In this design, input mel-frequency
coefficients (MFCC) are fed into a TDNN, and the result-
ing embeddings are termed x-vectors. SpeakerNet [1] is a
lightweight model that uses an x-vector-based statistics pool-
ing layer. It comprises residual blocks with 1-dimensional
depth-wise separable convolutions, batch normalization, and
ReLU layers. Another variant of the x-vector architecture
with improved results is the emphasized channel attention,
propagation, and aggregation TDNN (ECAPA-TDNN) [8].
This model integrates insights from computer vision, intro-
ducing enhancements such as 1D Res2Net modules with
skip connections to improve the capture of temporal relation-
ships, Squeeze-and-Excitation layers to emphasize informa-
tive channels, refining feature discrimination, and channel
attention propagation and aggregation to further distribute
attention weights across TDNN layers.

Speech recordings in the real world are often affected
by background noise and reverberation. These disturbances
make it challenging for a person to understand the speech
and can also degrade the quality of extracted speaker embed-
dings, leading to inaccuracies in speaker verification. Speech
enhancement plays an important role in speech signal pro-
cessing as it aims to improve the intelligibility and quality of
speech by removing noise from corrupted signals [9]. While
it might seem intuitive that applying speech enhancement to
noisy recordings would improve speaker embeddings, this is
often untrue. The primary objective of speech enhancement
is noise suppression, and it does not explicitly guarantee im-
provements in downstream tasks such as speaker verification.
The artifacts and distortions introduced during the enhance-
ment process can sometimes degrade speaker verification
performance even further [10]. This issue has become more
prominent recently as generative DNNs are increasingly used
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Fig. 1: t-SNE visualization of SpeakerNet [1] embeddings extracted from two speakers in the VoxCelebl [2] dataset with
babble noise at an SNR of -15 dB: (a) without any processing, (b) enhanced using DeepFilterNet3 [3], and (c) generated using
the proposed method, which combines embeddings from (a) and (b).

for speech enhancement. These models can produce superior
speech quality and effectively enhance speech contaminated
by higher noise levels. However, their generative nature can
lead to significant distortions of the speaker’s intrinsic char-
acteristics in the speech signal, especially under challenging
noise conditions.

Several previous studies have investigated speaker ver-
ification in noisy conditions. Some of these works pro-
pose training a speech enhancement module specifically for
speaker verification, using a tailored loss function [11] or
learning a mapping from noisy to clean speech embeddings
[12, 13]. Other approaches focus on learning to extract ro-
bust speaker embeddings by separately capturing noise and
speaker characteristics [14, 15]. A common strategy is to
use a cascaded architecture, where instead of separately pro-
cessing speech enhancement and speaker verification, the
two modules are integrated into a single framework through
joint optimization [16, 17, 18]. While existing works demon-
strate enhanced noise robustness for speaker verification,
they rely on training a dedicated speech enhancement mod-
ule, a speaker verification module, or both. This is a major
drawback as training state-of-the-art enhancement and ver-
ification modules often demands significant computational
resources and access to large high-quality datasets, which
may not be readily available. Our proposed framework offers
a more practical solution by utilizing any such pre-trained
enhancement or verification module out-of-the-box. This
approach not only simplifies the design but also significantly
reduces computation complexity. Unlike [19], which employs
a learning-based interpolation agent to automatically deter-
mine the optimal linear combination of noisy and enhanced
signals, our framework combines the speaker embeddings
extracted from both sources. This nonlinear combination of
embeddings is performed in a highly informative latent space,
enabling improved performance without the added complex-
ity of training an interpolation agent. Furthermore, our uti-
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lization of state-of-the-art speech enhancement techniques
allows us to deliver reliable speaker verification performance
even in severe noisy conditions where previous speaker veri-
fication methods fail and where speech enhancement methods
introduce significant distortions to speaker characteristics.

2. ROBUST SPEAKER VERIFICATION

The solution we propose is based on the understanding that
speaker embeddings extracted from noisy speech signals and
their corresponding enhanced signal embeddings provide
complementary information. By combining this complemen-
tary information, we can create a more robust embedding
that is resistant to noise. In conditions with relatively low
noise, the noisy embedding is expected to be more informa-
tive because it is less likely to be affected by significant noise
artifacts. On the other hand, in challenging noise conditions,
the enhanced embedding is likely to provide more valuable
information, benefiting from the noise reduction achieved
through the enhancement process. We suggest training a
neural network to effectively combine these two types of
embeddings, taking into account various types and levels of
noise. This network can adaptively adjust the contributions
of each embedding based on the noise level perceived in the
input speech. As a result, this approach can enhance speaker
verification performance across different noise scenarios.
Figure 1 illustrates this concept with a t-SNE visualization
of embeddings from noisy utterances of two speakers in the
VoxCelebl dataset. The figure shows that, compared to our
approach where noisy and enhanced embeddings of each ut-
terance are combined, the noisy and enhanced embeddings of
the two speakers are more distinctly separable. This facili-
tates more accurate speaker verification.

As illustrated in Fig. 2, our framework is based on
Siamese neural networks. These neural networks are specif-
ically designed to compare pairs of inputs and assess their
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Fig. 2: Proposed Siamese architecture for learning robust speaker embeddings.

degree of similarity. This capability has proven invaluable in
face recognition, image matching, and fingerprint verification
applications. A Siamese architecture involves feeding two
inputs into the network: a query input and a reference input.
Each input is processed by identical subnetworks with the
same weights and parameters, resulting in extracted features.
A distance function is then applied to calculate the distance
between the feature vectors of the two inputs. The computed
distance is a metric for determining the similarity between
the inputs, with a smaller distance indicating a higher de-
gree of similarity. In our case, the inputs to the network
are two speech utterances. Two embeddings of size N x 1
are extracted for each speech utterance: one from the noisy
utterance and one from the enhanced utterance. The two em-
beddings of each utterance are combined using a 3-layer MLP
(Multi-Layer Perceptron). The first layer is of size 2N x 1,
while the other two are each of size N x 1. Between the lay-
ers, a ReLU activation function is applied. The MLP learns
nonlinear relationships between the two input embeddings
and performs dimensionality reduction to output a robust
speaker embedding of size N x 1. The two MLPs, which
follow the Siamese architecture, share the same structure and
weights. These weights are optimized based on the similarity
between the two robust embeddings, as determined by the
loss function. Note that the 3-layer MLP is significantly more
straightforward to train than deeper networks and requires
less computational resources.

This framework offers the flexibility to employ any
speech enhancement and speaker embedding method, en-
abling the seamless integration of state-of-the-art techniques
out-of-the-box. By leveraging cutting-edge speech enhance-
ment methods, we can deliver reliable speaker verification
performance even in highly challenging noisy environments,
where other speaker verification methods struggle and speech
enhancement methods introduce significant distortions to
speaker characteristics.
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We employ a triplet loss function [20] commonly used for
recognition and verification tasks. This loss aims to learn a
distance metric that effectively distinguishes between similar
and dissimilar examples. We use a variant of triplet loss based
on cosine distance to account for the magnitude-invariance
property often desired when comparing speaker embeddings.
This loss is defined as:

L(A, P,N) = max(0,d(A, P) — d(A,N) +a) (1)

where A is an anchor utterance, P is a utterance from the
same speaker as A, and N is a utterance from a different
speaker. The margin « controls the separation between pos-
itive and negative pairs. The function d(X,Y") is the cosine
distance between X and Y, derived from the cosine similarity
that measures the angle 6 between the two vectors:

XY
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2
Triplet loss minimizes the distance between an anchor and its
positive examples (utterances from the same speaker), while
maximizing the distance between the anchor and its negative
examples (utterances from different speakers). This approach
encourages the model to place utterances from the same
speaker closer together in the embedding space, while en-
suring that utterances from different speakers are positioned
further apart.

3. RESULTS

Our proposed framework was trained and evaluated using the
VoxCelebl dataset [2], a collection of celebrity utterances ex-
tracted from YouTube videos. The VoxCelebl training set
comprises 148,642 utterances from 1,211 speakers, while the
test set contains 4,874 utterances from 40 speakers. To sim-
ulate real-world noise conditions, we augmented both train-
ing and test sets with recordings from the MUSAN corpus



Table 1: Speaker verification results using our proposed method, compared to verification on noisy signals and noisy signals
enhanced with DeepFilterNet3 [3]. The evaluation was performed using SpeakerNet [1] and ECAPA-TDNN [8] speaker em-
beddings, with noise from the MUSAN corpus [21], covering three noise types at varying SNR levels. Performance is measured
using the Equal Error Rate (EER), with the best results highlighted in bold.

SpeakerNet

ECAPA-TDNN

Type \SNR Noisy \ Enhc \

Ours Noisy \ Enhc \ Ours

0 9.70 13.45

13.17 3.31 7.68 9.43

-5 16.39 18.18

15.67 5.50 12.22 10.76

Noise -10 26.19 25.12

19.31 12.53 19.08 14.74

-15 34.71 32.77

25.21 23.23 2691 21.48

-20 41.66 39.69

33.00 31.86 34.27 29.90

0 12.42 14.62

15.33 4.96 8.31 12.19

-5 23.73 22.80

19.48 13.61 16.28 16.37

Music | -10 36.82 33.72

27.37 28.41 27.38 24.49

-15 44.46 41.86

36.37 41.11 38.09 | 34.96

-20 48.69 | 47.39

44.05 4790 | 45.77 43.88

0 20.24 24.79

21.89 19.13 23.16 24.04

-5 32.64 36.59

26.82 34.89 37.63 31.43

Babble | -10 43.85 44.77

32.30 45.15 45.50 | 38.47

-15 46.72 47.48

37.21 48.27 47.78 42.18

-20 48.31 48.38

41.73 48.77 48.62 45.38

[21], which includes three categories of noises: 6 hours of
general noise, such as DTMF tones, thunder, footsteps, paper
rustling, and animal noises, 42 hours of music, and 60 hours
of speech babble noise. We divided the MUSAN corpus into
two disjoint sets: one for training set augmentation and the
other for test set augmentation. Each utterance in the training
set was corrupted with a randomly selected signal-to-noise
ratio (SNR) between 0 and -20 dB. The test set was evalu-
ated at SNR levels of {0, -5, -10, -15, -20} dB. These SNR
levels are lower than those typically found in previous liter-
ature. Our framework is especially beneficial at these lower
SNR levels due to its innovative use of state-of-the-art speech
enhancement and speaker verification models out-of-the-box.
Our model was trained using the AdamW optimizer with a
batch size of 32, a learning rate of 102, and a triplet margin
parameter o = 0.25. Since it is lightweight, it was trained for
just 10 minutes on an NVIDIA RTX 3090.

Table 1 summarizes the results of our proposed method,
compared to speaker verification using noisy and enhanced
embeddings, where the enhancement was performed with
DeepFilterNet3 [3]. The evaluation was conducted using
speaker embeddings from SpeakerNet [1] and ECAPA-
TDNN [8]. Notably, ECAPA-TDNN demonstrates greater
robustness to noise compared to SpeakerNet, typically result-
ing in better performance at lower SNR levels. At SNR =
0, the noisy embedding achieves the best verification perfor-
mance. However, at lower SNRs, the enhanced embedding
occasionally outperforms it, while our proposed method con-
sistently delivers the best results in these lower SNRs.

4. CONCLUSIONS

This paper presented a novel neural network framework
for robust speaker verification in challenging acoustic en-
vironments. The proposed Siamese architecture effectively
integrates speaker embeddings from both noisy and enhanced
speech, leveraging their complementary information to im-
prove verification performance. By utilizing state-of-the-art,
pre-trained speech enhancement and speaker verification
models, the framework eliminates the need for task-specific
training, making it both practical and computationally ef-
ficient. Experimental results demonstrate the superiority
of the proposed approach across diverse noise conditions,
particularly in highly degraded environments where conven-
tional speaker verification methods often fail. Moreover,
the framework is inherently flexible and agnostic to specific
speech enhancement and speaker verification techniques, en-
abling seamless integration with future advancements in these
fields.
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