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Université Paris-Saclay, Inria
Gif-sur-Yvette, France

jean-christophe.pesquet@centralesupelec.fr

Ismail Ben Ayed
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Abstract—Closed-set unseen speaker identification is a crucial
task in various applications, including forensics, fraud prevention,
multi-speaker meetings, and speaker retrieval. The objective is
to identify a specific individual at test time from a predefined
group of speakers that were not seen during training, referred
to as the watchlist. This task inherently aligns with the Few-Shot
Learning paradigm. To address this challenge, we propose a novel
few-shot transductive learning method, Few-Shot for A Single
Class (FSAiC), which leverages a maximum likelihood approach
specifically tailored for speaker identification. Furthermore, this
study presents the first comprehensive evaluation of Few-Shot
Speaker Identification, examining both inductive and transduc-
tive methods across both in-domain and out-of-domain scenarios.
A key advantage of the proposed approach is its capacity to
accommodate an arbitrary number of speakers in the watchlist
while consistently outperforming state-of-the-art inductive and
transductive algorithms, particularly in multi-shot settings.

Index Terms—Speaker Identification, Closed-Set, Transductive
Learning, Forensics

I. INTRODUCTION

Speaker recognition, including speaker verification (SV),
speaker identification (SI), and speaker diarization (SD), has
been studied for over three decades [1]. Even though SV has
dominated due to its role in biometric authentication [2], SI
supports diverse applications, such as multi-speaker meeting
identification [3], user-based customization for voice assistants
[4], speaker naming in media [5]–[7], speaker retrieval [8]–
[10], emergency call centers [11], and forensic or fraud
prevention [12], [13].

While SI is a multiclass classification problem, real-world
scenarios rarely have a fixed set of speakers, as new ones are
continually added. Thus, identifying unseen speakers is more
realistic. Unseen SI has two categories: closed-set and open-
set. In the closed-set case, all utterances come from enrolled
speakers (i.e., in a watchlist) who were not encountered dur-
ing training. Open-set Speaker Identification (OSSI) extends
this by allowing utterances from speakers outside the watchlist,
making it an even more challenging problem.

Recent research has focused on the OSSI task [14]–[17].
Shon et al. introduced the MCE2018 challenge [18] for OSSI,
evaluating systems with top-S and top-1 metrics. The top
submission [19] reported a 40% relative increase in top-1 error
due to identification errors, a trend also noted in [16]. While

most OSSI studies treat the task as two-step, they focus on
verification and assume identification is trivial [14], despite
previous studies suggesting otherwise. Thus, these studies may
overlook practical challenges by focusing only on VoxCeleb
distributions or small household scenarios (4-6 speakers).

However, closed-Set Unseen SI has also gained attention
with the rise of meta-learning techniques for SR [20], with
Few-Shot Prototypical Networks (PNs) being widely used
[21]. However, Laenen et al. [22] showed that PNs can
be outperformed by non-episodic inductive and transductive
baselines [23], [24]. While inductive methods classify queries
individually, transductive methods utilize the entire query set
statistics [25], [26], leading to notable performance gains.
These transductive methods often leverage pre-trained foun-
dation models instead of complex episodic learning pipelines.

Therefore, we will focus only on closed-set unseen SI,
to push benchmarks towards more realistic setups. The task
involves identifying a speaker from a watchlist of enrolled
speakers (K classes in the support set S) based on one or
more short utterances at test time (query set Q). This scenario
is inherently a Few-Shot Learning problem, with the key dis-
tinction that Q contains samples from a single class, becoming
a Closed-Set Transductive Few-Shot Single Speaker Iden-
tification task. We assume that test-time utterances originate
from a single speaker for the following practical reasons:
(i) multi-channel setups, such as telephonic conversations,
inherently manage speaker separation; (ii) in mono-channel
multi-speaker scenarios, speaker diarization is often applied
as preprocessing; and (iii) restricting test-time utterances to a
single speaker enables a more robust transductive approach,
eliminating the need for query distribution estimation when
aggregating utterances.

We evaluate both inductive and transductive methods across
watchlists of varying sizes in both in-domain and out-of-
domain settings. Unlike traditional few-shot setups that restrict
the support set S to a limited number of classes (e.g., 5- or
10-way classification), our experiments involve 500 to 1100
classes. To reflect the single-speaker case, we constrain Q to
one effective class, with 1 to 5 short utterances per speaker.
This setting necessitates a departure from existing few-shot
approaches, which we address by proposing a novel, tuning-
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free, optimization method that scales well to large support sets.
To summarize, our contributions are as follows: (i) we

introduce a more realistic benchmark for closed-set unseen SI,
(ii) we perform the first comprehensive evaluation of inductive
and transductive methods for Few-Shot Closed-Set SI, and (iii)
we propose a novel few-shot learning method that adapts better
to the scenario where there is a single speaker or class in the
query set. Note that all the code will be made available on
GitHub1 upon the acceptance of the paper.

The rest of the paper is structured as follows. The theoretical
background of the methods explored in our work and the pro-
posed methodological approaches are presented in Section II.
In Section III-A, we introduce the datasets, training, and few-
shot experimental setup. Lastly, in Section III-B we present
our results, followed by a short conclusion in Section IV.

II. METHODS

A. Few-shot approach

Consider a labeled training set Dbase, defined as Dbase =
{(xn, yn)}1⩽n⩽|Dbase|, where (xn)1⩽n⩽|Dbase| represents the
raw embeddings in Rd extracted using a feature extractor fθ
(parameterized by some vector θ), and (yn)1⩽n⩽|Dbase| are the
corresponding labels. In the few-shot learning literature, this
labeled set is commonly referred to as the meta-training or
base dataset. Let Ybase denote the set of classes within this
base dataset. The few-shot setting assumes that a test dataset
Dtest = {(xn, yn)}Nn=1 is provided, using a notation similar
to Dbase. However, Dtest contains an entirely different set of
classes Ytest such that Ybase ∩Ytest = ∅. From this test dataset,
few-shot tasks are created by sampling a small number of
labeled examples.

Specifically, each K-way NS-shot task involves sampling
NS labeled examples from each of K distinct classes, usually
chosen at random. S denotes the index set of these labeled ex-
amples, known as the support set, with a total size |S| = KNS.
Additionally, each task includes a query set, Q, indexing NQ
unlabeled (unseen) examples. In the context considered in this
paper, the query set Q contains a single class (i.e., speaker).
This differs from standard few-shot settings where Q may
contain examples from the K classes.

Feature Normalization: Similar to Wang et al. [23], we
L2-normalize the support embeddings (xn)n∈S and query
embeddings (xn)n∈Q produced by feature extractor fθ.

B. Few-shot for a single class

We introduce a new tuning-free method called ”Few-Shot
for A single Class” (FSAiC), tailored to the assumption that
the effective number of classes Keff in the query set is equal to
1. For each sample n ∈ S∪Q, we define the one-hot encoding
vector un with components

(∀k ∈ {1, . . . ,K}) un,k =

{
1 if n is in class k

0 otherwise.
(1)

1https://github.com/gabitza-tech/few-shot-si

We further assume the following Gaussian probabilistic model:

xn ∼ N (wk, σ
2Id), if un,k = 1, (2)

where wk ∈ Rd, σ > 0, and Id is the identity matrix of
size d × d. Our objective is to find the class q of the data in
the query set as well as estimating the means (wk)1⩽k⩽K .
To do so, we adopt the maximum likelihood approach where
we maximize the probability distribution of the feature vectors
expressed as∏

n∈S

( K∑
k=1

un,k g(xn −wk | σ)
) ∏

n∈Q
g(xn −wq | σ),

where g(· | σ) denotes the probability density function of
a zero-mean Gaussian vector with uncorrelated components
of variance σ2. This results in a mixed discrete-continuous
optimization problem.

Moreover, we impose the condition that, for every k ∈
{1, . . . ,K}, the norm of wk is equal to 1. The constrained
maximum likelihood problem can then be addressed using the
Lagrange multiplier method, yielding an explicit solution. To
this end, we define the normalized centroid of the support
class k ∈ {1, . . . ,K} as wS

k, and the centroid of the same
class, under the assumption that the query samples belong to
it, as wS∪Q

k :

wS
k =

∑
n∈S un,kxn

∥
∑

n∈S un,kxn∥
(3)

wS∪Q
k =

∑
n∈S un,kxn +

∑
n∈Q xn

∥
∑

n∈S un,kxn +
∑

n∈Q xn∥
. (4)

After some simple calculations, it can be shown that the op-
timal solution to the constrained maximum likelihood problem
is obtained by finding q ∈ {1, . . . ,K} minimizing

Cq =
∑
n∈S

un,q(∥wS∪Q
q − xn∥2 − ∥wS

q − xn∥2)

+
∑
n∈Q

∥wS∪Q
q − xn∥2, (5)

while the associated mean estimates are wk = wS
k if k ̸= q

and wq = wS∪Q
q . The optimal q value is found by minimizing

Cq . This method provides a streamlined approach, balancing
the complexity of implementation with the need for effective
class probability estimation in few-shot learning scenarios.

C. Other methods

For a comprehensive evaluation, we compared our approach
with the established inductive baseline method SimpleShot
[23] and several variations we introduced to address our spe-
cific scenario. Additionally, we assessed our method against a
majority vote version of PADDLE [27], detailed below. We
do not compare our methods with PNs, as they are very
sensitive to the Q-S training episode configuration and appear
unsuitable for our scenario, where Keff ≪ K.

• SimpleShot (SS): Based on the nearest neighbor rule, a
class q is assigned to each query sample xn with n ∈
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Q based on the smallest Euclidean distance to wS
q the

support class q centroid from (3). For (xn)n∈Q, we assign
labels (qn)n∈Q in the query, following the assignment
rule:

(∀n ∈ Q) qn = argmin
k∈{1,...,K}

∥xn −wS
k∥. (6)

This method is used as an inductive baseline because
it provides an estimated label for each query sample
independently from other samples in the query set Q.

• SimpleShot majority vote (SMV): Exploiting the fact
that Q contains only one class, we implement a majority
voting variation of SimpleShot that assigns a single
speaker to all query samples (xn)n∈Q.

• PADDLE: We also evaluate our method against a variation
of a state-of-the-art transductive iterative approach, where
we incorporate majority voting. Martin et. al. [27] re-
cently introduced the PrimAl Dual Minimum Description
LEngth (PADDLE) algorithm to address the realistic sce-
nario in few-shot learning where the number of effective
classes Keff in the query set is significantly smaller than in
the support set, which is indeed our context. The authors
assumed a Gaussian Mixture Model for the query set data,
leading to a statistical approach based on the Expectation
Maximization algorithm. Their method effectively tackles
a general Minimum Description Length problem balanc-
ing data-fitting accuracy and model complexity. To avoid
parameter tuning, the penalization parameter has been set
to its theoretical value, λ = NQ.

III. SIMULATION RESULTS

A. Experimental setting

Datasets: We use several large-scale datasets for both train-
ing and evaluation, in order to conduct a comprehensive anal-
ysis. For training, we use the dev set from VoxCeleb2 [28],
with 5994 speakers and 1M utterances of variable lengths, as
well as the chinese multi-genre dataset CN-Celeb2 [29], with
1996 speakers and approximately 500k utterances. We also use
the RIR [30] and MUSAN [31] datasets for data augmenta-
tion. We evaluate across several in-domain and out-of-domain
datasets in order to accurately represent the performance of
different inductive and transductive methods.
VoxCeleb1 [32]: Containing 1251 speakers, approxi-

mately 150k utterances. It has a similar data distribution to
the VoxCeleb2 dataset. We divided the dataset classes in
two subsets: 10% development classes, for model fine-tuning
or hyper-parameter tuning, and 90% test classes. This results
in 1125 speakers in the test set.
CN-Celeb1 [33]: Containing a total of 997 speakers and

about 130k recordings. Out of these 997 speakers, we only
keep the speakers that have at least 10 samples, meaning we
are left with 951 speakers and approximately 126k recordings.
Similarly, we apply a 10%-90% dev-test split, resulting in 856
speakers in the test set.
JukeBox-V1 [34]: Containing a total of 670 singers and

a total of 385 hours of data, obtained from the combination of

TABLE I
TOP 1 ACCURACY (%) RESULTS ON THE VOXCELEB1 DATASET.

BOLD = BEST RESULT; UNDERLINE = SECOND BEST RESULT.

NQ SS SMV PADDLE FSAiC

1 92.38 92.38 92.42 92.48
3 91.7 96.81 99.06 99.18
5 91.2 98.45 99.41 99.56

the auxiliary, train and test subsets. Out of these 670 classes,
we only keep the classes with at least 10 samples, resulting
in 561 classes and approximately 43k recordings. We apply
a 10%-90% dev-test split, resulting in 505 speakers in the
test set. We conduct this singer recognition evaluation as it
represents a challenging out-of-domain scenario, with voice
variations from both pitch changes and background sounds.

Each recording in the evaluation datasets is randomly
cropped to a 3s audio, with the exception of the JukeBox-V1
dataset, where we split the recordings in 30s non-overlapping
segments, similar to the original paper.

Model training: We have chosen to use an ECAPA-TDNN
[35] architecture with filter length C = 1024, totalling 14.7M
parameters, as our feature extractor. We train two models from
scratch, one on 5994 speakers from VoxCeleb2 dev set,
and another on 7990 speakers from VoxCeleb2 dev and
CN-Celeb2 dataset. The recordings used for training are
split in non-overlapping segments of 3s, resulting in 2.27M
utterances for the first model, and 3.35M utterances for the
second model, respectively. We follow a similar training setup
to [36], where we apply online augmentation using simulated
RIR and MUSAN noise, as well as SpecAugment [37]. We train
each model with AAM Softmax, setting a margin of 0.2 and
a scale of 30, for 25 epochs with a batch size of 1024, using
an A100 80 GB GPU.

The model trained only on VoxCeleb2 achieves an Equal
Error Rate (EER) of 1.21% on Vox-O trial set and an EER of
15.25% on CN-Celeb1 trial set. The model trained on both
VoxCeleb2 and CN-Celeb2 achieves an EER of 1.2% on
Vox-O and 8.07% on CN-Celeb1. We do not use any score
normalisation.

Few-shot setup: For all the datasets analyzed, we extract
embeddings from the recordings using a feature extractor fθ as
explained above. We construct our few-shot evaluation tasks
with varying numbers of NS shots and NQ query samples,
with values ranging from 1 to 5. Unlike standard few-shot
evaluation setups, we do not constrain our episodes to 5- or
10-way classification. Instead, for all evaluation datasets, we
utilize the entire test subset, which includes between 505-ways
and 1125-ways classification. Following standard few-shot
evaluation practices, we report the Top-1 accuracy averaged
over 10,000 tasks.

B. Results

We first evaluate the simplest scenario on the VoxCeleb1
dataset, reporting 3-shot 1125-way results in Table I. Varying
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TABLE II
RESULTS ON CN-CELEB1 AND JUKEBOX-V1 DATASETS. THE COLUMN Train INDICATES THE DATASETS ON WHICH THE FEATURE EXTRACTOR fθ WAS

TRAINED. NS REPRESENTS THE NUMBER OF SHOTS IN THE SUPPORT SET S AND NQ REPRESENTS THE NUMBER OF SAMPLES IN Q. THE LAST TWO ROWS
OF THE TABLE REPORT THE AVERAGE ACCURACY OF THE VOX2 AND VOX2+CN2 MODELS FOR EACH METHOD, ACROSS ALL NS :NQ CONFIGURATIONS.

BOLD = BEST RESULT; UNDERLINE = SECOND BEST RESULT. WE REPORT TOP 1 ACCURACY (%).

CN-Celeb1 JukeBox-V1

Train NS:NQ SS SMV PADDLE FSAiC SS SMV PADDLE FSAiC

Vox2

1:1 23.09 23.09 23.09 23.09 29.64 29.64 29.64 29.64
1:3 21.36 25.17 35.85 35.18 28.27 32.44 42.24 39.38
1:5 20.58 31.03 40.43 39.75 27.49 37.50 45.58 42.02
3:1 36.40 36.40 35.66 36.44 37.43 37.43 38.25 38.34
3:3 34.84 40.93 51.10 54.06 36.01 41.49 50.87 52.19
3:5 34.31 49.80 56.28 60.62 35.37 47.20 55.35 57.54
5:1 42.17 42.17 41.92 42.41 41.10 41.10 41.78 41.92
5:3 41.21 48.09 59.42 61.10 39.46 45.14 57.49 57.38
5:5 40.50 57.41 65.19 67.89 38.85 51.33 62.22 63.21

Vox2+CN2

1:1 34.35 34.35 34.35 34.35 34.46 34.46 34.46 34.46
1:3 31.24 36.64 48.61 47.92 32.30 36.69 47.97 46.77
1:5 29.73 42.98 52.26 51.40 31.33 42.28 50.57 49.26
3:1 49.19 49.19 48.63 49.41 46.08 46.08 46.89 46.99
3:3 46.29 53.89 63.41 66.33 43.53 49.39 60.02 61.22
3:5 44.72 61.69 67.31 71.70 42.59 56.05 63.62 66.42
5:1 54.47 54.47 54.46 54.89 51.36 51.36 51.86 51.87
5:3 51.68 59.45 69.52 71.95 47.86 54.18 65.76 66.49
5:5 50.40 67.96 74.46 77.65 46.35 60.24 69.73 71.42

AVG Vox2 32.72 39.34 45.44 46.63 34.85 40.36 47.05 46.85
AVG Vox2+CN2 43.56 51.18 57.00 58.40 41.76 47.86 54.54 54.96

NQ between 1 and 5 allows us to evaluate the influence of the
available query set. The model was trained on VoxCeleb2,
representing an in-domain scenario. The proposed method
FSAiC consistently outperforms the other evaluated methods
and manages to relatively improve by up to 9.1% over the
inductive baseline. Notably, with a few labelled samples, both
PADDLE and FSAiC reach around 99% Top-1 accuracy.

In Table II, we present results on the CN-Celeb1 dataset
(856-ways) and the singing JukeBox-V1 dataset (505-
ways). For both datasets, we evaluate multiple Q-S config-
urations using two models. Compared to the VoxCeleb1
scenario, the 3-shot configuration exhibits a substantial per-
formance drop—exceeding 30%—across all methods, models,
and datasets. This confirms our hypothesis that prior OSSI
benchmarks did not adequately address the most realistic
closed-set subtask configurations.

Firstly, we observe a significant improvement across both
datasets when using the model trained on English and Chi-
nese. While expected for CN-Celeb1, which benefits from
Chinese-language data, a similar trend on the singing dataset
suggests that CN-Celeb2’s diverse domain coverage, includ-
ing singing, may contribute to this effect. Moreover, transduc-
tive approaches consistently outperform the inductive baseline
SS, SSMV achieving an absolute Top-1 accuracy improvement
of up to 17%.

However, PADDLE and FSAiC exhibit greater general-
ization capabilities even for out-of-domain tasks. In the 1-

shot scenario, PADDLE achieves the best overall perfor-
mance, even surpassing FSAiC, itself significantly outper-
forming the inductive baseline SS. The improvement is par-
ticularly notable in the most challenging experimental con-
dition—the JukeBox-V1 dataset evaluated with the Vox2
model—wherein PADDLE demonstrates superior robustness
when confronted with significant domain shifts.

Finally, in the multi-shot scenario, FSAiC consistently
outperforms all other methods. Compared to the inductive
baseline, it achieves an absolute accuracy improvement of up
to 26.3% and compared to the transductive baseline PADDLE,
it exhibits a gain of up to 4.4%. Averaging across all configu-
rations and datasets, FSAiC achieves the best overall results.
Therefore, FSAiC stands as an effective baseline for Single
Query-Class Few-Shot tasks, offering strong out-of-domain
robustness with reasonable complexity.

IV. CONCLUSIONS

This paper presents the first comprehensive study on large-
scale closed-set Few-Shot Speaker Identification in both in-
domain and out-of-domain scenarios, demonstrating the ad-
vantages of transductive methods over inductive ones. Our
proposed method, FSAiC, consistently outperforms compet-
ing approaches in multi-shot scenarios and demonstrates su-
perior robustness in out-of-domain conditions. Additionally,
we explore a variation of the transductive method PADDLE,
which performs very well in the one-shot setting. Despite these
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significant advancements, our findings emphasize that Closed-
Set SI remains a challenging research area. Future work will
extend these investigations to open-set identification and in the
wild multi-speaker mono channel conversations.

This work was partly funded by EU HORIZON project no.
101070190 (AI4TRUST project) and by a grant of the Ministry
of Research, Innovation and Digitization, CNCS/CCCDI - UE-
FISCDI, project number PN-IV-P8-8.1-PRE-HE-ORG-2023-
0078, within PNCDI IV.
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