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Abstract—This paper proposes a single-stage training ap-
proach that semantically aligns three modalities - audio, visual,
and text using a contrastive learning framework. Contrastive
training has gained prominence for multimodal alignment, uti-
lizing large-scale unlabeled data to learn shared representa-
tions. Existing deep learning approach for trimodal alignment
involves two-stages, that separately align visual-text and audio-
text modalities. This approach suffers from mismatched data
distributions, resulting in suboptimal alignment. Leveraging the
AVCaps dataset, which provides audio, visual and audio-visual
captions for video clips, our method jointly optimizes the rep-
resentation of all the modalities using contrastive training. Our
results demonstrate that the single-stage approach outperforms
the two-stage method, achieving a two-fold improvement in audio
based visual retrieval, highlighting the advantages of unified
multimodal representation learning.

Index Terms—Multimodal representation, AVCaps, Audio-
visual

I. INTRODUCTION

The increasing prevalence of multimodal content and large
language models demands the development of models capable
of jointly processing and understanding audio, visual (video
frames without sound), and textual modalities. Contrastive
learning techniques [1, 2] have proven effective in bridging
modality gaps. They achieve better semantic alignment across
modalities compared to earlier deep learning approaches. For
example, multimodal deep Boltzmann machines [3] relied
on generative modeling, [4] demonstrated that CNNs trained
to predict words from image captions could learn useful
multimodal representations. Contrastive learning frameworks
explicitly optimize for multimodal similarity achieving supe-
rior alignment.

Multimodal representation learning has seen significant
advancements in aligning two modalities. Models like
ALIGN [5], CLIP [1], Florence [6] achieve impressive results
by aligning image-text pairs; and CLAP [2] performs effec-
tively in aligning audio-text pairs, using the contrastive learn-
ing frameworks. However, extending this success to trimodal
alignment remains a challenge. Two-stage approaches, such
as wav2CLIP [7], first align visual and textual modalities in a
shared embedding space and then introduce audio alignment in
a second stage. While effective for certain tasks, this sequential
process often leads to suboptimal audio-visual alignment, as
the model is biased towards the initial visual-text relationship.
Moreover, differing dataset distributions between the two
stages amplify the alignment issues, making it difficult to
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Fig. 1: Schematic representation of the two-stage reference
method (a) and the proposed single-stage method (b). Our
proposed method aligns the representations from the three
modalities by jointly optimizing the visual-text (Lvt), audio-
text (Lat), and audio-visual (Lav) contrastive losses.

fully capture the intricate interactions among audio, visual,
and textual modalities.

Trimodal representation learning is further hampered by
the lack of datasets with modality-specific textual annotations
for audio and visual data for the same video clip. Existing
datasets, focus on visual-text [8–10] or audio-text [11–14]
pairs, leaving a gap in capturing the complex relationships
required for unified trimodal models. AudioCLIP [15] attempts
to bridge this gap by extending CLIP with an audio branch and
aligning all three modalities using sound event classes from
AudioSet [16] as textual descriptions. However, these anno-
tations are primarily sound-centric and lack visual context.
These limitations highlight the need for unified frameworks
and datasets that enable simultaneous learning across all three
modalities. Recently, we released the AVCaps dataset [17]
that contains modality-specific captions for audio, visual, and
audiovisual modalities associated with video clips.

This paper presents SLAVA, a Single-stage Language Audio
Visual Alignment model contrastively trained to semantically
align the three modalities effectively. Unlike previous methods
that use either a two-stage approach [7] or a single-stage model
with only audio captions [15], we leverage the AVCaps dataset
to simultaneously utilize both audio and visual captions. This
allows us to align all three modalities within a single-stage
framework. Our results demonstrate that SLAVA achieves
superior trimodal alignment, outperforming existing methods.
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II. RELATED WORKS

A. Contrastive Language-Image Pretraining (CLIP)

The CLIP model [1] is a powerful contrastive learning
framework designed to align textual and visual modalities.
Trained on large-scale of 400M image-text pairs, it enables the
model to learn meaningful correspondences between natural
language descriptions and images. However, its reliance on
object-centric captions in the training data limits its capacity to
capture event-level or scene-level relationships. Additionally,
since the text encoder was trained solely with captions derived
for static images, it has not been exposed to audio-related
language. This restricts CLIP’s ability to generalize to tasks
involving audio-visual contexts or to represent relationships
beyond the visual modality.

B. Contrastive Language-Audio Pretraining (CLAP)

CLAP [2] uses contrastive learning to align textual and
audio modalities. Training on audio-text pairs, CLAP enables
associations between natural language descriptions and diverse
audio inputs, such as environmental sounds or speech. CLAP
is trained with a relatively smaller dataset of 128K audio clips
and their associated textual description sourced from various
audio captioning datasets. Similar to the limitations of CLIP,
The CLAP text encoder has not been exposed to vision specific
language during training, constraining its ability to represent
visual relationships.

C. Wav2CLIP

Wav2CLIP [7] uses a two-stage approach for audio-visual-
textual alignment. It involves training a visual-text semantic
alignment model in the first stage. In the second stage, one of
the branches is either frozen or fine-tuned along with an audio-
text or audio-visual dataset to achieve trimodal alignment. A
common issue with this method arises from using datasets
from different sources for the two stages, resulting in data
distribution mismatches that lead to suboptimal alignment.

D. AudioCLIP

In AudioCLIP [15], the authors proposed a single stage
model by utilizing AudioSet [16], a dataset that includes video
clips associated with sound events, as a foundation for its
trimodal training. AudioCLIP extends CLIP by integrating
an audio encoder to the CLIP framework to create a unified
model. While this trimodal approach represents significant
progress, it has certain limitations. The textual descriptions
used for aligning the three modalities are derived from Au-
dioset sound-event classes, resulting in annotations that are
primarily focused on sound-event-specific information. This
focus limits the model’s ability to generalize to tasks requiring
balanced, scene-level, or context-rich representations across
audio-visual modalities.

III. METHODS

A. Dataset

We use our recently released AVCaps [17] dataset. The
dataset comprises 2,061 videos with a total duration of 28.8

hours. Each video is annotated with up to five crowdsourced
captions for audio, visual, and audio-visual modalities. In addi-
tion, each video includes three audio-visual captions generated
using GPT-4, leveraging the modality-specific captions. This
uniqueness of AVCaps dataset enables a comprehensive study
of training strategies for aligning audio, visual, and textual
modalities.

B. Overview of the methods

In all our experiments, we used pretrained CLIP image and
text encoders and CLAP audio encoder and finetuned their
projection layers to obtain latent representations of visual,
textual, and audio inputs. The CLIP image encoder processes
an input video of M frames individually to produce a repre-
sentation of size RM×768, while the text encoder generates a
R512 representation for a given textual input. The CLAP audio
encoder takes N chunks of 10-second audio inputs and returns
a representation of size RN×768.

The encoded representations are passed through their re-
spective projection layers. The CLIP image and CLAP audio
projection layers, each a linear layer with 512 neurons, convert
RM×768 and RN×768 to RM×512 and RN×512, respectively.
The CLIP text projection layer is also a linear layer with 512
neurons and hence keeps the size of the text representation
unchanged. To make the representations of the three modalities
the same size, we compute the average of the audio and visual
features along the time axis, resulting in a final representation
of R512. The projection layers, which learn the joint multi-
modal representation are finetuned using the InfoNCE [18]
contrastive loss.

Table I provides an overview of the reference methods
alongside our proposed approaches, highlighting the trainable
layers, the AVCaps data partitions used, and the loss functions
employed. These methods are further detailed in the following
subsections.

C. Reference Methods

1) Wav2CLIP-style two-stage model: In this approach,
we first align the visual and textual representations, followed
by the alignment of audio and textual representations in the
next stage. We use the AVCaps dataset, which provides audio
and visual captions for the same videos, to address data
distribution mismatches in conventional two-stage models.
We begin by fine-tuning the projection layers of a pre-trained
CLIP model, using the visual content from the videos and
their crowdsourced visual captions. For the second stage, we
finetune the audio projection layers of a pre-trained CLAP
model alongside the textual projection layers of the CLIP text
encoder from stage one. Alternatively, we experimented with
keeping the text projection layers frozen, only fine-tuning the
audio projection layers in the second stage. This approach
is similar to the training paradigm used in Wav2CLIP. In
this approach, we align the audio and visual embeddings
indirectly through shared textual representations, which may
result in suboptimal performance for audio-visual tasks.
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Methods Stages Trainable Layers Training data Objective Function

Wav2CLIP-style
Stage 1 Visual and text projection Visuals and visual captions Lvt

Stage 2 Audio and text projection Audio and audio captions Lat

AudioCLIP-style Single stage Audio, visual, and text projection Audios, visuals, audio captions Lav + Lvt + Lat

SLAVAA&V (ours) Single stage Audio, visual, and text projection Audios, visuals, audio captions, visual captions Lav + (Lvt or Lat)

SLAVAAV (ours) Single stage Audio, visual, and text projection Audios, visuals, audio-visual captions Lav + Lvt + Lat

TABLE I: Overview of the reference and proposed models, training stages, trainable layers, datasets, and loss functions. Lav,
Lat, and Lvt represent the audio-visual, audio-text, and visual-text contrastive losses respectively.

2) AudioCLIP-style single-stage model: As an additional
reference, we developed a single-stage model inspired by the
AudioCLIP framework. In this model, we fine-tuned the pre-
trained CLIP projection layers and CLAP audio projection
layers using the visuals, audios, and the audio captions from
the AVCaps dataset using pairwise contrastive losses for
all three modalities. This approach mirrors the AudioCLIP
training process, which utilized the AudioSet, as their cap-
tions predominantly focus on sound events. By aligning the
three modalities directly in a single-stage framework, this
method provides an additional benchmark for evaluating the
performance of our proposed trimodal alignment approach.
The single-stage approach addresses the indirect audio-visual
alignment limitation of the two-stage approach. However, its
effectiveness is limited by the fine-tuning dataset, where the
textual descriptions cover only a single modality, in this case
audio.

D. Proposed methods

1) SLAVA with audio and visual captions: Our proposed
SLAVA model uses both audio and visual captions for single-
stage training to enhance multimodal alignment. In this setup,
the model benefits from both auditory and visual informa-
tion present in the textual captions, enhancing the alignment
between all three modalities. Figure 1b shows our proposed
SLAVA model. For each minibatch, we choose corresponding
audios, visuals, and randomly either audio captions or visual
captions from the AVCaps dataset. When audio captions are
used, the loss includes audio-text and audio-visual contrastive
terms. Conversely, when visual captions are used, the loss
comprises visual-text and audio-visual contrastive terms. We
refer to this model as SLAVAA&V denoting that it was trained
with audio and visual captions. The total loss Ltotal in this case
is given by

Ltotal = Lav + (Lat or Lvt) (1)

where, Lav, Lat, and Lvt represent the audio-visual, audio-text,
and visual-text contrastive losses respectively. Our approach
addresses the limitations of our reference methods by 1) en-
abling explicit alignment of both audio and visual modalities,
and 2) ensuring that the textual descriptions comprehensively
cover both audio and visual modalities.

2) SLAVA with audio-visual captions: In another set of ex-
periments, we used the audios, visuals and the LLM-generated
audio-visual captions. We refer to this model as SLAVAAV
denoting that it was trained on audio-visual captions. For
these experiments, we designed two training configurations.
In the first configuration, training was performed using two
contrastive losses Lat and Lvt. This approach allows us to com-
pare how well the captions containing both audio and visual
information could indirectly improve audio-visual alignment
without explicitly applying Lav. In this configuration, the loss
function is given by

Ltotal = Lat + Lvt (2)

In the second configuration, we included the Lav, thereby
explicitly aligning all three modalities. The loss function is
given by

Ltotal = Lav + Lat + Lvt (3)

IV. EVALUATION

To evaluate our reference and proposed methods, we per-
formed a series of retrieval tasks designed to assess bimodal
and trimodal alignment. All our models were finetuned on
the AVCaps training split for 20 epochs, using the AdamW
optimizer with a learning rate of 1e−5 and a weight decay of
0.1 using the InfoNCE loss [18]. The best model is selected
based on its performance on the validation split of AVCaps.

We evaluated all our models on the test split of AVCaps on
several retrieval tasks with the widely used recall@10 metric.
In a retrieval task, a textual caption or an audio signal serves
as the input query, which is compared against all items in
the database to retrieve the top-10 most similar results. The
recall@10 metric calculates the proportion of relevant items
among the top-10 retrieved results by the total of items in the
dataset.

The bimodal retrieval tasks evaluate the model’s ability to
retrieve one modality using queries from another, such as
retrieving audio with audio captions or visuals with visual
captions. For crossmodal retrieval, we investigate tasks like
audio captions based visual retrieval and visual captions based
audio retrieval, which require the model to align represen-
tations across different modalities. We also evaluate audio-
visual captions based audio and visual retrieval. Additionally,
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Retrieve Based On Wav2CLIP-style (2 stage) AudioCLIP-style SLAVAA&V SLAVAAV (ours)

Frozen Text Trainable Text (single stage) (ours) Lat + Lvt Lav + Lat + Lvt

Visual Visual Captions 0.84 0.82 0.69 0.81 0.83 0.81

Visual Audio Captions 0.26 0.29 0.29 0.30 0.29 0.29

Visual Audio-Visual Captions 0.86 0.86 0.75 0.85 0.89 0.86

Audio Audio Captions 0.35 0.40 0.36 0.37 0.33 0.34

Audio Visual Captions 0.27 0.29 0.26 0.32 0.32 0.33

Audio Audio-Visual Captions 0.41 0.41 0.37 0.40 0.44 0.45

Visual Audio 0.22 0.27 0.45 0.52 0.40 0.50

TABLE II: Recall@10 retrieval performance across various models and configurations on the AVCaps test split.

to compare our models in terms of audio-visual similarities,
we analyze the performance of audio based visual retrieval to
assess how the models align and transfer knowledge between
these two modalities. These tasks provide a comprehensive
evaluation of the model’s ability in creating a shared multi-
modal representation for all three modalities involved.

V. RESULTS

Table II shows the retrieval performance of all our models
on the AVCaps test split evaluated using the recall@10 metric.
Wav2CLIP-style results show the retrieval performance of our
reference two-stage model in two configurations: frozen and
trainable text projection layers in stage 2. In the first approach,
the text encoder is trained only with visual captions and CLIP
training data, which mainly contain vision-specific language.
When audio captions are introduced in stage 2, the frozen
text encoder produces suboptimal representations, constraining
the audio representation to align with these suboptimal text
embeddings. This results in a weaker audio-visual alignment.
In contrast, updating the text projection layer in stage 2 enables
the audio encoder to learn better representations of the input
audio, resulting in better alignment. Finetuning text projection
layers slightly lowers visual retrieval with visual captions but
improves audio retrieval and other crossmodal tasks.

AudioCLIP-style results present the performance of our
reference single-stage model, which aligns all three modalities
using audio captions. It improves the audio-visual alignment,
with audio-based visual retrieval increasing to 0.45 compared
to 0.27 of the two-stage approach. However, the visual re-
trieval scores drop significantly in comparison to the two-stage
approach. This is because the captions contain audio-specific
information which shifts the distribution of the text encoder
away from its original visual-centric pretraining, reducing its
ability to capture visual features.

SLAVAA&V results summarize the performance of our pro-
posed single-stage model trained on audio and visual captions.
It uses audio-visual contrastive loss combined with either
audio-text or visual-text contrastive loss, based on the textual
input in the mini-batch. By directly incorporating audio-visual
contrastive loss, the single-stage approach improves audio-
based visual retrieval, increasing recall@10 to 0.52 from
0.27, while maintaining performance across other retrieval

tasks. These results clearly establish that single-stage trimodal
alignment using both audio and visual captions enabled by
AVCaps dataset create a robust multimodal representation
compared to the traditional two-stage approach.

Finally, we present the results of our SLAVAAV model, a
single-stage model trained with audio-visual captions. The
first approach, using only audio-text and visual-text contrastive
losses, is designed for comparison with the two-stage model
lacking explicit audio-visual alignment. Despite this, our pro-
posed model achieves a recall@10 of 0.40 for audio-based
visual retrieval, compared to 0.27 for the two-stage model.
In the second approach, the model incorporates an additional
audio-visual contrastive loss alongside audio-text and visual-
text losses, enabling explicit alignment across the modalities.
This model outperforms the reference single stage model on
almost all the retrieval tasks across modalities.

We also trained an audio-visual alignment model using
the CLIP image encoder and the CLAP audio encoder, with
audio and visuals from the AVCaps training split. This model
achieved a score of 0.50 in audio-based visual retrieval on
the test split. Our proposed SLAVA models match this per-
formance while also effectively aligning the textual modality
with both the audio and visual modalities.

VI. CONCLUSION

In this paper, we proposed SLAVA, a single-stage approach
for multimodal alignment that jointly optimizes audio, visual,
and textual representations using contrastive training. Our
method addresses the limitations of two-stage approaches,
where separate training of visual-text and audio-text models
often leads to suboptimal alignment due to mismatched data
distributions. Using modality-specific captions in the AVCaps
dataset, we demonstrated that our approach significantly im-
proves alignment across modalities. Evaluation results on a
variety of retrieval tasks, show that our single-stage method
outperforms the traditional two-stage approach, achieving a
recall@10 score of 0.52 in audio-based visual retrieval com-
pared to 0.27 of the reference model. These findings highlight
the advantages of AVCaps dataset and a unified framework for
multimodal representation learning, demonstrating its potential
for advancing tasks such as audio-visual captioning, video
understanding, and multimodal question answering.
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