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Abstract—The dawn of the Transformer era has advanced
emotion recognition systems. Transformers capture contextual
dependencies in data, making them highly effective for complex
applications such as sentiment analysis and audio emotion
recognition. In this study, we used self-supervised learning models
such as wav2vec for speech and DistilBERT, a transformer-based
model for text, to enhance the continuous emotion recognition
system. These models are evaluated in the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) database, which contains
speech data labeled with emotional dimensions such as valence,
arousal, and dominance(VAD). Due to the complexity of the data
and computational cost in fusing DistilBERT and wav2vec, we
used an autoencoder for dimensionality reduction. To our knowl-
edge, this is the first study to combine wav2vec and DistilBERT-
like pre-trained features for Continuous Multimodal Emotion
Recognition (CMER), addressing the challenge of limited labeled
training data. Our experiments, evaluated using the Concordance
Correlation Coefficient (CCC), show a significant performance
boost, achieving a CCC of 0.808, 0.719 and 0.635 respectively for
VAD dimensions compared to 0.603, 0.736 and 0.647 when using
traditional feature extraction techniques (LSTM/CNN1D) on the
IEMOCAP dataset. This demonstrates the effectiveness of using
SSL models for emotion recognition tasks that typically suffer
from small amounts of labeled data.

Index Terms—Continuous Multimodal Emotion Recogni-
tion, Wav2vec2.0, DistilBERT, Autoencoder, Valence-Arousal-
Dominance (VAD), early fusion.

I. INTRODUCTION

Emotion Recognition (ER) is essential not only for human
interactions, but also to enhance human-computer interaction,
making systems more reactive and responsive to the
emotional states of users [1]. Traditionally, most ER studies
have focused on classifying emotions into discrete categories
such as happiness, anger, sadness, and fear. However, recent
research has shifted towards continuous emotion recognition,
where emotional states are represented in a multidimensional
space defined by VAD dimensions. By integrating these
dimensions, a more comprehensive emotional spectrum, and
a richer contextual basis for predicting specific emotional
intensities is provided [23]. The emergence of deep learning

(DL) technology has enabled the recognition of human
emotions through speech [2], text [3], facial expressions
[4], and physiological signals [5]. However, performance
based on a single modality, remains limited. To overcome
these challenges, researchers have integrated two or more
modalities [6], [14]. Multimodal Emotion Recognition (MER)
field has been significantly advanced with the introduction
of Transformer-based models [7]. Specifically, the fusion of
speech and text signals which has gained increasing attention
in recent years. Self-supervised models such as Wav2Vec2.0
[8] and HuBERT [8] have improved feature extraction and
representation learning in the Speec Emotion Recognition
(SER) system. Similarly, pre-trained language models such
as BERT [9] have demonstrated remarkable improvements by
capturing deep contextual representations in textual emotion
recognition. Although HuBERT and Wav2vec2.0 [8] perform
well for activation and dominance, they struggle with valence
prediction. To address this, extensive research has been
conducted to combine text and speech modalities to predict
emotions expressed in the VAD dimensions and to improve
the SER system. In this context, Srinivasan et al. [10]
proposed a teacher-student approach that improves SER by
integrating lexical information. Their approach achieves state-
of-the-art CCC scores on IEMOCAP (0.582 Valence, 0.667
Arousal, 0.545 Dominance), demonstrating the effectiveness
of multimodal fusion. Triantafyllopoulos et al. [11] proposed
a multistage fusion approach that integrates acoustic and
linguistic information. Their architecture consists of a
CNN14, a 14 layer convolutional neural network originally
adapted from the PANNs (Pretrained Audio Neural Networks)
framework [24], for speech feature extraction and a BERT-
based text model, with fusion occurring at different stages
within the CNN. Their results demonstrated that multistage
fusion outperformed both baselines, achieving CCC scores of
0.714 for valence, 0.639 for arousal, and 0.575 for dominance,
highlighting the advantage of incorporating linguistic context
for improved emotion recognition specifically for the valence
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score. Zhang et al. [12] propose a novel emotion recognition
approach using a transformer-based model that integrates
pre-trained wav2vec 2.0 for the extraction of speech features
and BERT for the extraction of text features. Furthermore,
LSTM layers are used to learn hidden representations from
the merged speech and text data. Evaluated on the Iemocap
dataset , their models showed competitive results.

In these studies, wav2vec for speech and BERT for text
have proven to be effective solutions for Multimodal Emotion
Recognition (MER), enabling the fusion of both acoustic and
linguistic information.
While prior work [12] explored the fusion of Wav2Vec2.0 and
BERT features and demonstrated improvements using early
fusion strategies, our work introduces two key novelties:

• We incorporate a lightweight Transformer, DistilBERT,
for the text modality to reduce computational load while
maintaining performance.

• We introduce a dedicated autoencoder module for di-
mensionality reduction of both modalities before fusion,
addressing the challenge of high-dimensional multimodal
data.

Furthermore, we conduct a comprehensive comparison of
early and late fusion strategies, demonstrating that while
early fusion yields strong results, late fusion combined with
autoencoder-based compression achieves the best performance
in valence and dominance recognition. The remainder of this
paper is organized as follows: Section 2 gives an overview of
the proposed system. Section 3 describes the experiments and
the implementation details. Section 4 presents the results and
a comparison with previous works. We conclude in the last
section.

II. METHODOLOGY AND PROPOSED SYSTEM

The architecture of the proposed system for predicting VAD
from speech and text signals is presented in this section. In
line with [17], which explores reducing model size while
maintaining performance using DistilHuBERT and linguis-
tic informations, our work integrates DistilBERT for textual
feature extraction and self-supervised learning Wav2Vec 2.0
representations for speech processing.
The proposed framework is built on the wav2vec2-large-
robust model, specifically fine-tuned for emotion recognition,
and the DistilBERT base available at: https://huggingface.co/
audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim and
https://huggingface.co/distilbert/distilbert-base-uncased.
To evaluate the effectiveness of multimodal fusion, we experi-
mented with late fusion and early fusion strategies. The base-
line architecture is composed of four principal components:

1) Audio feature extraction Block: Using Wav2vec 2.0
pretrained model, high and complex acoustic features
are extracted.

Facoustics = Wav2Vec2(Xa), Facoustics ∈ RB×T×d (1)

where Xa is the channel audio input, B is the batch size,
T is the sequence length, and d is the dimension of the
extracted representation.

2) Textual feature extraction Block: We use DistilBERT
pre-trained model to extract deep contextualized repre-
sentations from textual informations:

Ftext = DistilBERT(Xt), Ftext ∈ RB×L×h (2)

where Xt is tokenized text, L is the number of tokens
in the input sequence, and h is the hidden size of
DistilBERT representations.

3) Autoencoder: To reduce the dimensionality of both
speech and text embeddings while preserving important
features, we introduce an Autoencoder. An autoencoder
has a very specific architecture, because the hidden lay-
ers are smaller than the input layers and this architecture
is called a ”bottleneck” architecture [18]. It contains two
parts:

• The encoder which transforms the input into a
representation in a lower-dimensional space called
the latent space. The encoder therefore compresses
the input into a less expensive representation. The
encoder’s formulation for speech and text signals is
given by:

Zacoustic = fenc(Facoustic), Zacoustic ∈ RB×d′
(3)

Ztext = fenc(Ftext), Ztext ∈ RB×h′
(4)

where d’ and h’ represent the reduced dimensions
for speech and text, respectively.

• The second part is called the decoder, because it
must reconstruct, using the latent representation of
the input, an output that is as faithful as possible to
the input.
The Decoder (Reconstruction Loss - Training Phase
Only) formula is given by:

Dacoustic = fdec(zacoustic), Dacoustic ≈ F acoustic
(5)

Dtext = fdec(Ztext), Dtext ≈ F text (6)

The autoencoder is trained to minimize the reconstruc-
tion loss:

Lrec = ||F acoustic −Dwav||2 + ||F text −Dtext||2 (7)

4) Fusion and Regression Layer
• early Fusion: After obtaining the reduced speech

and text embeddings, Features from linguistic and
vocal informations are concatenated and fed into a
regression layer as shown in Fig.1:

Pfusion = Concat(Zacoustic, Ztext), Pfusion ∈ RB×(d′+h′)

(8)
Ŷ = FC(Pfusion), Ŷ ∈ RB×3 (9)
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Fig. 1. MER System: Early Fusion

where: Ŷ represents the predicted valence, arousal,
and dominance scores and FC is the fully connected
layers.

• Late Fusion: the features are processed separately
before fusion as shown in Fig.2. After applying
the autoencoder the speech features Zacoustic go
through a CNN1D Layer followed by linear lay-
ers. Similarly, the text features Ztext undergo the
same processing. The predicted values from both
modalities (speech and text) are then concatenated
and passed through dense layers for final prediction.
Formally, the late fusion can be written as:
For speech:

Ŷacoustic = Dense(ReLU(Linear(Zacoustic)))

For text:

Ŷtext = Dense(ReLU(Linear(Ztext)))

Predictions obtained from Speech and text are then
concatenated as follow:

Pfusion = Concat(Ŷacoustic, Ŷtext), Pfusion ∈ RB×6

Where Pfusion represents the concatenated output
from speech and text.
Finally, pass through two dense layers for final
prediction:

Ŷfinal = Dense2(ReLU(Dense1(Pfusion)))

Fig. 2. MER system: Late Fusion

Where:
- Dense1 and Dense2 are the two fully connected
layers in the late fusion architecture.
- Ŷfinal is the predicted value for VAD emotional
state.

III. EXPERIMENTAL SETUP

We evaluated this framework on the IEMOCAP dataset, a
benchmark corpus for emotion recognition.

A. IEMOCAP Database and Data Splitting

IEMOCAP database is utilized [13]. This database com-
prises approximately 12 hours of data, encompassing 10,039
utterances, all of which are included in our analysis. Al-
though the database includes measurements of speech, facial
expressions, head, and affective dyadic session movements,
our study focuses solely on speech data. Emotional labels
within continuous space are attributed dimensions of valence,
arousal, and dominance. We adopt a speaker-independent split,
reserving Session 5 for testing. The remaining sessions are
divided into 90% for training and 10% for validation.
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B. preprocessing data

The preprocessing pipeline is specifically designed for the
structure of the IEMOCAP data set, handling audio and
textual modalities. Audio processing begins by loading WAV
files and resampling them to 16kHz for consistency. Textual
content undergoes tokenization using DistilBERT’s tokenizer
with a fixed 128-token length. The VAD attributes are assigned
within the range of [1,5]. Following the approach of previous
work [2], these labels fall into the range of [-1,1] which is
influenced by the correspondence between the VAD model
and the discrete model of emotions proposed by Russell and
Mehrabian [15].

C. Hyperparameters

The model components (Wav2Vec2.0, DistilBERT, au-
toencoder, and fusion layers) are trained end-to-end using
the Adam optimizer. Table I details the hyperparameters.
Wav2Vec2.0 uses a higher learning rate due to its larger
architecture, while DistilBERT uses a smaller rate to avoid
overfitting.

TABLE I
HYPERPARAMETERS OF PIPELINE TRAINING.

Wav2vec2.0 DistilBERT
Number of layer/encoder 24 encoders 6layers

Number of units 1024 768
Output Activation GELU GELU

learning Rate 5e-4 5e-5
Batch Size 8 8

Maximum Epochs 5 5
Optimizer Adam Adam

Wav2Vec2 uses a higher learning rate to adapt its larger
pre-trained architecture [21], while DistilBERT’s smaller size
benefits from a lower rate to avoid overfitting [22].

D. Evaluation Metrics:

In the field of affective computing, CCC is the selected
metric to evaluate the performance of dimensional emotion
recognition [17]. This metric indicates the agreement between
the predicted and the ground truth attribute scores for Iemocap
dataset. Denoting the mean and variance of the ground truth
by µg , σ2

g and the mean and variance of the predicted scores
by µp, σ2

p, ρ is the Pearson correlation coefficient. The CCC
is defined as:

CCC =
2ρσgσp

σ2
g + σ2

p + (µg − µp)2
(10)

CCC is considered superior to Pearson correlation because it
penalizes deviations in scale [17], and offers a quantitative
measure of the model’s prediction performance in relation to
actual emotional dimensions.

IV. RESULTS AND DISCUSSION

Table II displays the CCC scores for VAD emotional states,
from different methods.

TABLE II
SPEAKER-INDEPENDENT EVALUATION RESULTS ON IEMOCAP: IMPACT

OF FEATURE FUSION AND DIMENSIONALITY REDUCTION ON SER
PERFORMANCE.

Model Valence (CCC) Arousal (CCC) Dominance (CCC)
DistilBERT 0.685 0.453 0.485
Wav2Vec2 0.475 0.708 0.456
Early Fusion 0.732 0.730 0.610
Late Fusion 0.808 0.719 0.635

In this study, we evaluated two fusion strategies for predict-
ing VAD by integrating DistilBERT for text and Wav2Vec 2.0
for speech.
Table II presents the results of our experiments, highlighting
the impact of early fusion and late fusion compared to uni-
modal approaches. Our baseline models include DistilBERT,
which achieved CCC scores of 0.685 for valence, 0.453
for arousal, and 0.456 for dominance, and Wav2Vec2 with
CCC scores of 0.475 for valence, 0.708 for arousal, and
0.456 for dominance. Our results demonstrate that Wav2Vec2
with its strong ability to capture audio features, outperforms
in predicting arousal compared to valence and dominance.
In contrast, DistilBERT excels at predicting valence, which
aligns with its strong performance in capturing semantic and
contextual information from text. These findings highlight the
complementary nature of speech and text features for emo-
tion recognition, suggesting that combining these two signals
may further improve overall performance. While early Fusion
approach improved CCC scores to 0.732 for valence, 0.730
for arousal, and 0.610 for dominance, showing a notable gain
in valence prediction, further improvements were achieved
through late fusion, where predictions from both modalities
are combined at a decision level. This method led to the best
performance, with CCC scores of 0.808 for valence, 0.719 for
arousal, and 0.635 for dominance. These findings underscore
the effectiveness of multimodal fusion strategies, where late
fusion outperforms early fusion in capturing emotional cues,
especially for valence and dominance prediction. The autoen-
coder’s dimensionality reduction improved fusion efficiency
by removing redundant features and reducing overfitting. To
assess the performance of these models, a cross-comparison
was performed with previous results published on the IEMO-
CAP dataset, as shown in Table III. Compared with [11], our
model enhances the CCC scores of valence by 13.17%, also
the CCC scores of Arousal by 12.52% and the value of CCC
dominance by 10.43%.

V. CONCLUSION

In this study, we propose a novel approach to fuse deep
speech embeddings from Wav2Vec 2.0 with textual represen-
tations from DistilBERT to recognize emotions in continuous
space. To address the high dimensionality of the combined
features, we incorporate an autoencoder for dimensionality
reduction for both early and late fusion. Evaluated on the
IEMOCAP dataset, our approach achieved a competitive CCC
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TABLE III
COMPARISON OF PREVIOUS WORKS ON IEMOCAP WITH OUR

PROPOSED APPROACH.

Work Models Fusion V A D
[14] LSTM + CNN1D - 0.603 0.736 0.606
[10] HuBERT + BERT - 0.582 0.667 0.545
[11] CNN14 + BERT - 0.714 0.639 0.575
[12] Wav2Vec2-b + BERT-b Early Fusion 0.625 0.661 0.570

Our Work Wav2Vec2-l + DistilBERT
Early Fusion 0.732 0.730 0.610
Late Fusion 0.808 0.719 0.635

scores of 0.808 for valence, 0.719 for arousal, and 0.635
for dominance using late fusion. These results emphasize
the effectiveness of Transformer-based models and dimen-
sionality reduction via autoencoders in capturing nuanced
emotional cues, especially for valence and dominance. More
sophisticated fusion techniques, which can dynamically model
interactions between modalities like hybrid fusion and cross-
modal attention mechanisms will be explored in future work.
Additionally, we aim to evaluate the generalizability of our
proposed system on larger and more diverse datasets, including
MSP-Podcast.
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