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Abstract—As voice assistants become increasingly
integrated into our daily lives, the need for disfluency
detection continues to grow. This paper highlights
the importance of encoder representations in Whisper
model, particularly in the middle layers, for capturing
stutter characteristics. Our findings reveal that sound
repetitions, blocks, and prolongations are best cap-
tured by the middle layers, whereas word repetition
and interjections are predominantly recognized in the
final layers. This is likely because Whisper processes
them as filler words or repeated speech within normal
conversation. We evaluate performance across various
data splits and datasets to determine whether Whisper
primarily learns language representations or stutter
characteristics. However, results from cross-corpora
testing suggest that Whisper does not inherently learn
stutter characteristics, highlighting the need for further
refinement in stutter detection methodologies.

Index Terms—Stuttering, Whisper, disfluency detec-
tion, layer embeddings

I. Introduction
Speech disfluencies refer to obstructions in the normal

flow of speech occurring 4 - 6% of times while speaking
normally [1], [2]. Stuttering is one such type of speech
disfluency which affects around 1% of the world’s pop-
ulation approximating to 70 million people [3]. It signif-
icantly shapes an individual’s personality, distinguishing
them from others by affecting their confidence. This, in
turn, can influence social interactions, sometimes leading
to challenges such as fear, stress, and anxiety [4]. It is
recognized in one’s speech by taking the form of repeating
syllables, words, phrases or taking a long pause in between
words or adding filler words like ’umm’, ’uhh’, etc as
explained with example in Table I.

Intrinsically, automatic speech recognition (ASR) sys-
tems are trained on natural fluent speech. When it comes
to detecting disfluent speech using ASRs, they are unable
to identify the presence of disfluency. The disfluency in the
speech is treated as noise and it may aim to remove that
part of speech. Due to this reason, people who stutter are
unable to use voice assistants like Alexa, Siri, or Google
Assistant because it becomes difficult for these devices to
identify the disfluency and thus act accordingly [5], [6].
Recently, in 2022 around 24% of people [6] bought smart
speakers to help with their disfluency, yet it does not

work accurately for people who stutter [7]. The challenges
associated with ASRs highlight the importance of training
them on disfluent speech. By doing so, we can ensure
that a larger segment of the global population—often
overlooked—benefits from improved accessibility. This ap-
proach can support individuals in their everyday com-
munication, aid in speech therapy, and foster inclusivity
in voice-based technologies. There are several approaches
to addressing these challenges, including collecting and
publicly sharing datasets, generating synthetic data, or
fine-tuning ASRs to recognize stuttering and disfluencies.
Additionally, layers in ASR models such as wav2vec2.0 [8]
and Whisper [9] play a crucial role in detecting speech
irregularities. This work is inspired by recent research
efforts to adapt transformers for identifying speech dis-
fluencies through encoded representations. Our primary
focus is to analyze the layer-wise characteristics captured
by the Whisper Large v3 [9] model with an aim to explore
how Whisper’s middle layers interpret the characteristics
of disfluent speech, providing deeper insights into its pro-
cessing capabilities. In conclusion, our contribution can be
summarized as follows:

1) Our work helps uncover whether stuttering patterns
are captured earlier in the model or only in later
decision-making layers by Whisper?

2) Can we propose a lightweight efficient model using
Whisper for stutter detection?

3) Whether fine-tuning the Whisper architecture learns
language representation or speaker’s stutter charac-
teristics?

Stuttering Label Definition and Examples
Prolongation (PR) Elongated syllables e.g. “Nnnnot now’
Block (BLK) Stoppages in speech. e.g. “Call …me”
Sound Repetition (SR) Repeated syllables. e.g. “I ca-ca-can.”
Word Repetition (WR) Repeated words. e.g. “He [he] knows.”
Interjection (INJ) Insertion of fillers. e.g. “[Uh] Wait”

TABLE I: Types of Stuttering and Examples

II. Related Work
Disfluency detection has generally been done using

acoustic features, as it is evidently visible in the wave-
forms and their respective spectrograms. The majority of
studies have exercised spectral features like Mel-frequency
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Fig. 1: Architecture for stutter detection using Whisper encoder representations

cepstral coefficients (MFCCs) or Linear predictive coeffi-
cients (LPCs) and their respective derivatives to identify
different stutter types [10], [11]. Several research studies
[12], [13] have explored representations obtained from
neural networks for stutter detection (SD) of acoustic en-
coder models particularly focusing on wav2vec2.0 [8] and
Whisper [9]. These transformer-based models have shown
remarkable performance in detecting disfluencies [13]–[15].
A work done by [16] exploiting the use of ECAPA-TDNN
and wav2vec2.0 embeddings which focused on layers per-
formance and finding whether layer fusion helps in better
SD or not. A similar study by [17], where wav2vec2.0
layers were analysed for capturing stutter characteristics.
It demonstrated that middle layers capture better and
comparable stutter characteristics than those at last lay-
ers. Another study [18] demonstrated the use of encoder-
decoder models for disfluency detection using wav2vec2.0
and Whisper. They focused on extracting features from
layer 12 and 24. In [19], they also compared ASR models
like Google ASR [20] and WhisperX for disfluency de-
tection with one of the objective that whether choice of
ASR systems impacts model’s performance. Building on
the successful adaptation of large pre-trained models for
stutter classification, Ameer et al. [15] used frozen encoded
representations, further which were used for disfluency
detection.

III. Data
In our study, we use the Sep-28k [21], FluencyBank

[22], KSoF [23] and Boli [10] datasets. Among these,
Sep-28k is the largest publicly available dataset, derived
from 265 podcasts with 28,177 clips (≈ 3seconds). It
includes sound and word repetition, prolongation, blocks,
and interjections. FluencyBank, with 4,144 clips from
33 podcasts, mirrors these disfluencies. KSoF, a clinical
German dataset, consists of 5,597 clips (≈ 3seconds) from

214 clinical recordings, containing the same disfluency
types. Boli, the first publicly available Indian stutter
dataset, spans multiple languages, is word-level annotated
(≈ 5seconds), and includes 2.8 hours of audio from 28
speakers with both labels and speaker information.

A. Data Curation & Preparation
The Sep-28k [21], FluencyBank [22], and KSoF [23]

datasets use labels based on agreement among three anno-
tators. To ensure consistency, we keep files where at least
two annotators agreed on a label. Clips with Poor Audio
Quality, Difficult to Understand, Music, No Speech, Un-
sure, and Natural Pause are discarded for better reliability.
Also, to distinguish repetition types, we maintain separate
labels for sound and word repetition across all datasets. In
this paper, we use cross-corpora testing, training Whisper
on Sep-28k and testing on Boli, KSoF, and FluencyBank.
This helps assess whether the model learns stuttering
patterns or language characteristics. For speaker-exclusive
testing, we apply five-fold cross-validation and Leave-One-
Podcast-Out (LOPO), ensuring rigorous data partitioning
for reliable evaluation.

B. Datasets’ Limitations
All datasets show class imbalance, especially in Block

and Prolongation categories. Most data is in English,
which may affect performance in other languages. In the
HeStutter podcast from Sep-28k, the female host and male
guest cause misclassification in speaker identification, as
the model incorrectly attributes both voices to the host.
The dataset also lacks guest demographics, making it
harder to analyze speaker differentiation challenges. These
issues make Leave-One-Speaker-Out (LOSO) partitioning
unsuitable for Sep-28k. Meanwhile, although Boli has
only 280 clips, expanding it could improve model training
rather than just testing.
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Layer Classifier Sep-28k (5CV) Sep-28k (LOPO) FluencyBank (5CV) KSoF (5CV)
PR BLK SR WR INJ PR BLK SR WR INJ PR BLK SR WR INJ PR BLK SR WR INJ

15
RF 0.21 0.15 0.20 0.08 0.26 0.35 0.14 0.22 0.13 0.37 0.07 0.14 0.13 0.05 0.19 0.44 0.65 0.24 0.11 0.51

SVM 0.38 0.28 0.31 0.27 0.39 0.28 0.21 0.15 0.15 0.24 0.20 0.22 0.07 0.21 0.15 0.65 0.67 0.39 0.16 0.53
XGBoost 0.27 0.22 0.24 0.14 0.33 0.17 0.12 0.11 0.06 0.19 0.20 0.19 0.13 0.16 0.27 0.44 0.71 0.37 0.11 0.53

16
RF 0.20 0.18 0.24 0.09 0.26 0.36 0.14 0.22 0.14 0.35 0.27 0.05 0.07 0.05 0.19 0.48 0.70 0.23 0.16 0.50

SVM 0.41 0.28 0.30 0.29 0.39 0.31 0.21 0.16 0.15 0.25 0.33 0.32 0.07 0.21 0.31 0.58 0.65 0.41 0.16 0.54
XGBoost 0.26 0.26 0.27 0.17 0.32 0.19 0.14 0.11 0.08 0.18 0.27 0.16 0.20 0.05 0.31 0.45 0.71 0.28 0.11 0.59

19
RF 0.27 0.21 0.23 0.13 0.32 0.45 0.13 0.30 0.22 0.41 0.07 0.16 0.07 0.00 0.19 0.41 0.61 0.23 0.11 0.57

SVM 0.43 0.31 0.32 0.32 0.45 0.37 0.25 0.20 0.20 0.33 0.40 0.30 0.07 0.26 0.38 0.57 0.65 0.35 0.16 0.68
XGBoost 0.31 0.25 0.29 0.20 0.34 0.31 0.19 0.17 0.12 0.23 0.07 0.19 0.07 0.16 0.19 0.51 0.67 0.31 0.05 0.59

20
RF 0.27 0.16 0.21 0.13 0.39 0.48 0.10 0.30 0.18 0.42 0.13 0.05 0.13 0.11 0.19 0.38 0.67 0.31 0.11 0.51

SVM 0.41 0.28 0.32 0.32 0.45 0.36 0.25 0.19 0.19 0.34 0.33 0.30 0.07 0.16 0.23 0.59 0.65 0.39 0.21 0.66
XGBoost 0.34 0.21 0.31 0.24 0.36 0.29 0.18 0.17 0.13 0.27 0.33 0.08 0.27 0.16 0.15 0.48 0.65 0.25 0.05 0.58

25
RF 0.21 0.21 0.24 0.15 0.32 0.42 0.11 0.32 0.22 0.46 0.20 0.16 0.13 0.05 0.23 0.35 0.67 0.20 0.05 0.51

SVM 0.47 0.30 0.34 0.41 0.46 0.38 0.24 0.29 0.26 0.41 0.20 0.35 0.20 0.16 0.23 0.59 0.65 0.37 0.47 0.64
XGBoost 0.32 0.28 0.35 0.23 0.38 0.30 0.20 0.24 0.16 0.30 0.40 0.22 0.20 0.32 0.31 0.40 0.67 0.37 0.05 0.68

27
RF 0.25 0.22 0.27 0.22 0.36 0.39 0.12 0.34 0.25 0.48 0.13 0.24 0.27 0.21 0.19 0.38 0.67 0.28 0.05 0.65

SVM 0.49 0.36 0.35 0.43 0.55 0.38 0.27 0.28 0.36 0.42 0.20 0.41 0.27 0.21 0.27 0.56 0.65 0.39 0.32 0.69
XGBoost 0.37 0.28 0.32 0.31 0.43 0.27 0.23 0.23 0.23 0.28 0.27 0.30 0.20 0.21 0.27 0.47 0.66 0.28 0.05 0.68

28
RF 0.23 0.22 0.25 0.21 0.37 0.36 0.12 0.36 0.30 0.47 0.20 0.30 0.20 0.11 0.27 0.41 0.67 0.25 0.11 0.64

SVM 0.48 0.35 0.37 0.52 0.53 0.39 0.25 0.29 0.37 0.43 0.20 0.38 0.13 0.21 0.38 0.56 0.63 0.41 0.32 0.68
XGBoost 0.36 0.32 0.37 0.37 0.41 0.28 0.22 0.25 0.28 0.29 0.40 0.35 0.13 0.11 0.35 0.44 0.68 0.24 0.05 0.63

29
RF 0.24 0.23 0.28 0.32 0.39 0.40 0.11 0.33 0.29 0.49 0.27 0.22 0.13 0.16 0.31 0.26 0.66 0.32 0.05 0.71

SVM 0.49 0.35 0.36 0.54 0.57 0.39 0.28 0.31 0.40 0.45 0.27 0.49 0.33 0.11 0.31 0.56 0.67 0.35 0.47 0.68
XGBoost 0.35 0.30 0.36 0.40 0.46 0.29 0.25 0.28 0.28 0.32 0.33 0.30 0.20 0.37 0.35 0.45 0.67 0.31 0.05 0.63

30
RF 0.27 0.24 0.30 0.33 0.39 0.45 0.12 0.33 0.35 0.50 0.13 0.16 0.07 0.05 0.19 0.32 0.60 0.21 0.11 0.58

SVM 0.47 0.33 0.40 0.58 0.55 0.40 0.29 0.31 0.46 0.43 0.20 0.38 0.40 0.16 0.35 0.49 0.63 0.37 0.47 0.65
XGBoost 0.36 0.30 0.35 0.44 0.41 0.32 0.23 0.28 0.33 0.31 0.33 0.24 0.13 0.32 0.35 0.43 0.66 0.28 0.21 0.67

31
RF 0.24 0.26 0.24 0.31 0.38 0.40 0.15 0.33 0.37 0.51 0.13 0.30 0.13 0.16 0.31 0.35 0.65 0.25 0.21 0.52

SVM 0.50 0.35 0.37 0.59 0.55 0.39 0.30 0.32 0.46 0.44 0.20 0.35 0.27 0.11 0.31 0.47 0.64 0.37 0.42 0.64
XGBoost 0.36 0.31 0.36 0.43 0.39 0.30 0.22 0.26 0.34 0.36 0.20 0.22 0.07 0.21 0.35 0.41 0.65 0.30 0.21 0.60

32
RF 0.22 0.25 0.25 0.39 0.37 0.41 0.15 0.34 0.49 0.48 0.07 0.30 0.07 0.21 0.19 0.24 0.63 0.14 0.05 0.54

SVM 0.44 0.33 0.39 0.61 0.52 0.41 0.29 0.33 0.51 0.43 0.27 0.35 0.27 0.26 0.46 0.40 0.67 0.27 0.42 0.64
XGBoost 0.31 0.27 0.31 0.52 0.39 0.28 0.25 0.28 0.39 0.35 0.20 0.27 0.13 0.21 0.42 0.26 0.67 0.14 0.05 0.64

TABLE II: Layer-wise accuracies of Whisper Large v3 features evaluated on Sep-28k, FluencyBank, and KSoF datasets
using different classifiers for stutter detection. Here, PR stands for prolongation, BLK for blocks, SR for sound
repetition, WR for word repetition, INJ for interjections, 5CV for 5-cross fold validation, LOPO for leave-one-podcast-
out, RF for random forest and SVM for support vector machine.

IV. Method
A. Whisper

Whisper [24] is a robust ASR consisting of a family
of sequence-to-sequence transformer [25] based encoder-
decoder architecture. Whisper’s uniqueness lies not in
its architecture, but in its training data and training
approach. Its training data consists of 1 million hours
weakly labeled data and 4 million hours of pseudolabeled
data which is far more larger and more diverse. By default,
we use the Whisper Large v3 model unless mentioned
otherwise.

B. Understanding the selection of Whisper
There is a significant gap in the availability of a com-

prehensive stutter dataset that encompasses multilingual
stuttered speech, real-world audio samples, and a balanced
distribution of various stutter types. Additionally, the
consistency in Sep-28k, KSoF and Boli dataset is lacking,
making it challenging to combine different datasets into a
large, unified corpus. Addressing these gaps would enable
better utilization of publicly available stutter data. Our
work aims to address some of the aforementioned limi-
tations by utilizing the Whisper model. By leveraging the
hidden representations of Whisper, which has been trained
on 680,000 hours of multilingual and real-world data,
we seek to enhance the effectiveness of stutter detection

and analysis. Additionally, the extensive training on 96
languages increases the likelihood of reducing language
bias, making the model more robust and adaptable across
diverse linguistic contexts [24]. Gong et al. [26] utilized
Whisper’s representations for audio event classification,
achieving promising results across multiple audio-tagging
datasets. Building on this, Changawala et al. [27] applied
Whisper representations for stutter detection. Inspired by
these works, we explore Whisper-encoder representations
to investigate whether the middle layers effectively capture
stutter characteristics, particularly for stutter detection.

C. Model Architecture

We propose an architecture that utilizes only the en-
coder component of the transformer, leveraging hidden
representations from each Whisper encoder layer for
multi-class classification. Specifically, we extract stuttered
speech characteristics from the audio encoder of Whisper,
which consists of 32 encoded layers, each with a repre-
sentation of 500 × 1280 per audio file. This architecture
captures layer-wise information while employing various
train-test split techniques based on the dataset, which in-
cludes five-fold cross-validation and LOPO. Additionally,
we use Principal Component Analysis (PCA) to reduce di-
mensionality, preserving 95% variance and selecting upto
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Layer Classifier PR BLK SR WR INJ AVG F1

Test set: FluencyBank

22 RF 0.31 0.06 0.30 0.12 0.56 0.25
SVM 0.31 0.15 0.21 0.20 0.36 0.33

26 RF 0.45 0.04 0.22 0.04 0.37 0.26
SVM 0.23 0.20 0.16 0.18 0.19 0.33

27 RF 0.36 0.04 0.41 0.14 0.41 0.30
SVM 0.27 0.23 0.21 0.28 0.26 0.38

28 RF 0.40 0.07 0.21 0.13 0.39 0.30
SVM 0.35 0.25 0.24 0.28 0.30 0.40

29 RF 0.27 0.07 0.25 0.15 0.29 0.32
SVM 0.29 0.25 0.22 0.32 0.34 0.41

32 RF 0.39 0.07 0.30 0.43 0.36 0.36
SVM 0.35 0.23 0.30 0.36 0.37 0.44

Test set: KSoF

19 RF 0.45 0.08 0.33 0.03 0.21 0.29
SVM 0.02 0.05 0.12 0.00 0.06 0.16

20 RF 0.21 0.05 0.26 0.00 0.33 0.26
SVM 0.02 0.06 0.19 0.00 0.08 0.18

26 RF 0.10 0.14 0.54 0.00 0.15 0.22
SVM 0.01 0.05 0.12 0.00 0.03 0.14

31 RF 0.08 0.22 0.34 0.00 0.04 0.22
SVM 0.00 0.05 0.15 0.00 0.03 0.15

32 RF 0.06 0.08 0.25 0.09 0.03 0.20
SVM 0.02 0.08 0.16 0.00 0.03 0.17

Test set: Boli

15 RF 0.25 0.54 0.16 0.04 0.50 0.22
SVM 0.08 0.62 0.22 0.17 0.25 0.24

16 RF 0.18 0.46 0.22 0.22 0.50 0.25
SVM 0.08 0.63 0.18 0.39 0.25 0.25

21 RF 0.18 0.82 0.06 0.13 0.25 0.23
SVM 0.03 0.96 0.02 0.00 0.00 0.11

26 RF 0.10 0.73 0.24 0.00 0.13 0.20
SVM 0.05 0.89 0.07 0.00 0.00 0.13

32 RF 0.15 0.82 0.10 0.13 0.13 0.23
SVM 0.03 0.94 0.02 0.22 0.00 0.18

TABLE III: Comparison of accuracies for stuttering event
detection using RF, SVM, trained on Sep-28k and test-
ing on FluencyBank, KSoF and Boli dataset using layer
encoded representations

top 200 features. The overall architecture is illustrated in
Figure 1.

Corresponding to every encoder layer, each audio clip
has a shape of C × R (C=500, R=1280), where C repre-
sents the temporal dimension and R denotes the hidden
feature dimension. To enable efficient classification, we
apply temporal pooling to down-sample the temporal
representations to 1 × 1280. This process is performed
for every layer, where the representations are then passed
through a representation block and subsequently used for
classification.

Fig. 2: Layer wise performance of Whisper using SVM on
Sep-28k dataset

V. Experiments
This section outlines our experiments in evaluating the

Whisper model across different layers. We use Fluency-
Bank, KSoF and Boli dataset for cross-corpus evaluation.
LOPO evaluation is conducted on Sep-28k dataset, as it
includes information about which clips belong to specific
podcasts. Finally, we present our results in a layer-wise
analysis, highlighting which stutter types are best cap-
tured at different layers. Notably, some stutter types are
more effectively represented in the middle layers rather
than the final layers, providing insights into the model’s
internal feature extraction. For experiments, we use the
precomputed hidden representations of Whisper model
and apply temporal pooling (mean-pooling in temporal
dimension) resulting in a tensor of size 1 × 1280. Addi-
tionally, we perform data partitioning in two ways namely
5-cross-fold validation and LOPO. All experiments are
designed as multi-class classification tasks. To handle data
imbalance effectively, we employ the hybrid sampling to
tackle data imbalancing problem similar to [10].

VI. Results & Discussion
The primary objective of this work is not to surpass

state-of-the-art performance but rather to explore whether
a computationally expensive model like Whisper can be
optimized for efficiency. Specifically, we aim to determine
whether, among its 32 encoder blocks, certain layers are
more effective in capturing different stutter characteristics,
allowing us to focus computational resources accordingly.
Additionally, we employ machine learning classifiers like
random forest (RF), support vector machine (SVM) and
XGBoost to further reduce computational overhead, en-
suring a more lightweight and efficient model. The results
in Table II indicate that the model begins learning stutter
characteristics from the middle layers (starting at layer
15). Certain stutter types, such as sound repetition, pro-
longation and blocks, are best captured in these middle
layers. In contrast, word repetition and interjections are
primarily recognized in the final layers (30, 31), as Whisper
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interprets them as filler words or repeated speech segments
within the broader sense of treating them like fluent
speech. This pattern is consistently observed across all
datasets, highlighting how different stutter types are pro-
cessed at different layers. Notably, in the KSoF dataset,
layers 15–29 effectively capture all stutter types, except for
prolongation, which is best identified at layer 15 alone. The
above observations can be visually interpreted from Figure
2. The cross-corpora testing as shown in Table III, the
FluencyBank dataset captures stutter characteristics most
effectively from layer 22 onward until the final layer. For
KSoF, these characteristics are best represented between
layers 19 and 32, while for Boli, they are optimally cap-
tured from layers 15 to 32. However, in the KSoF and Boli
datasets, certain stutter classes remain undetected by one
of the classifiers. This is likely due to multilingual testing
in KSoF and variations in speaking styles in Boli, which,
as an Indian dataset, reflects diverse linguistic influences.

VII. Conclusion & Future work
We investigated the effectiveness of Whisper’s layer

representations for classifying different types of stuttered
speech. Whisper’s exceptional performance in ASR and
audio tagging inspired us to explore its layers’ potential for
stutter detection and classification. Our primary objective
was to find out whether Whisper focuses on learning stut-
ter characteristics rather than language representation,
particularly in the middle layers. If these layers inherently
capture stuttering patterns, they can be leveraged for early
stutter detection, reducing the reliance on the final output.
This approach allows middle layers to be repurposed for
specific stutter classification tasks, eliminating the need for
a fully trained ASR system. For future work, we propose
a pipeline architecture that focuses solely on the best-
performing layers for training. This approach aims to
enhance efficiency while improving detection and classi-
fication accuracy.
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