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Abstract—Recent progress in Automatic Speech Recognition
(ASR) has been coupled with a substantial increase in model
sizes, which may now hold billions of parameters, leading to slow
inferences even with adapted hardware. In this context, several
ASR models exist in various sizes, with different inference costs
leading to different performance levels. Based on the observation
that smaller models perform optimally on large parts of testing
corpora, we propose to train a decision module, that would allow,
given an audio sample, to use the smallest sufficient model leading
to a good transcription. We apply our approach to two Whisper
models with different sizes. By keeping the decision process
computationally efficient, we build a decision module that allows
substantial computational savings with reduced performance
drops.

I. INTRODUCTION

Recent progress in neural-based automatic speech recogni-
tion (ASR) has been driven by new modeling architectures,
data collection, and processing but also by larger models that
have recently exceeded a billion parameters [1], [2]. Such ad-
vances have promised enhanced accuracy and capabilities, yet
they have also ushered in escalating computational demands.
These ASR models are usually available in a certain range of
sizes with varying performance levels. For instance, Whisper
models [1] are available in 6 sizes from Tiny (39M parameters)
to Large (1.5B parameters), Nvidia FastConformers [3] range
from Large (118M parameters) to XXLarge (1.2B parameters)
and self-supervised models like Hubert [4] or WavLM [5] are
generally available in Base and Large versions. Systematically,
following the deep learning trend across modalities, larger ver-
sion models, even when trained on the same datasets, perform
substantially better than their reduced-size counterparts. This
is shown in Figure 1 (a), where the mean Word Error Rates
(WER) of four Whisper models with different sizes on the test
set of the CommonVoice dataset [6] are presented. The mean
WER drops from 28.1 with the “Tiny” version to 10.2 with
the “Medium”.

However, as shown in Figure 1 (b), this performance drop
may not concern a significant part of the testing points. In
this figure, every cell (i,7) shows the proportion of samples
in the CommonVoice test set where model ¢ performs better or
equally to model j. For instance, the third cell in the first line
(cell (0, 2)) states that for 52% of the testing samples, the Tiny
model (39M) performs equally or better than the Small one
(244M) while bearing more than 6 times fewer parameters.
Based on this observation, this work explores whether we
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Fig. 1. Absolute and relative performances of Whisper models on Com-
monVoice test set. The four models are Whisper Tiny (39M parameters),
Base (74M), Small (244M) and Medium (759M). Each cell ¢, 5 in Figure (b)
represents the percentage of utterances where the model 7 performs at least
as well as the model j.

can predict if audio samples will fall into this category. By
doing so, audio samples that would not benefit from the costly
inference of a large model can be assigned to a smaller one
in order to reduce the total computational load.

More precisely, this study aims to develop a decision module
that, given an audio sample, chooses a Whisper model version
that has the lowest inference cost without WER degradation.
To keep experiments as simple as possible, and show effective-
ness of the method, in this paper, we only focus on deciding if
an audio sample should be decoded with Whisper Tiny (39M)
or with Whisper Small (244M). These two model versions are
relevant candidates as they exhibit high differences in both
WER, inference costs, and latency.

A few works [7]-[9] have already attempted to choose
among several ASR model versions using WER prediction.
Given the textual output of an ASR model, they explored
the prediction of the sentence-level WER. Yet, these methods
are not aiming to reduce inference costs but rather to decide
whether an audio sample should be reassigned to a more
complex ASR model. Indeed, the most efficient techniques
predict WER using full ASR pipelines based on either acoustic
encoding and language-model-based beam search [8]. Such
methods that rely on costly beam searches cannot be used in
our case where the aim is to reduce the computational load.

Another close line of work is dynamic or early-exiting
approaches. Instead of saving computation by choosing be-
tween separate ASR models, these methods have attempted
to make forward passes lighter by skipping some of the last
transformer layers of an ASR model [10]-[12]. The decision to

EUSIPCO 2025



exit is based on entropy or representation-similarity thresholds.
However, early-exiting, as developed in these works, can only
save layer computation in the ASR encoder, while, as shown
in Table I, for attentional encoder-decoder architectures, most
of the computations occur in the beam search decoding.

The closest work to our effort is from Lugosch ef al. [13],
who proposes to save computation cost at inference time by
choosing between a large and a small ASR decoder. However,
their method relies only on the log-likelihood of the encoder.
We consider it as one of the baselines in this work.

This paper explores possibilities to build a decision module
that allows efficient selection between different ASR model
sizes while keeping high performance. Our contributions are
threefold :

o We successfully reduce inference costs for a negligible
WER degradation. In addition, our method can be used
to interpolate between model sizes, saving the need for
costly training of intermediate models.

We explore different inputs and architectures for the
decision module and compare them to several baselines
and toplines.

The codebase!, developed within the SpeechBrain [14]
framework, is released for further investigations.

II. METHODS

This section describes our main pipeline represented in
Figure 2. For a given audio sample, we first extract speech
features and connect the output to a decider module. This
latter is responsible for choosing to transcribe the audio with
either a computationally cheap model, Whisper Tiny, or a more
expensive one, Whisper Small. The computational cost of a
model is measured using Multiply-ACcumulate (MAC) (the
number of multiplications performed by the process).

TEXTTEXTTEXTTEXT TEXTTEXTTEXTTEXT

Whisper Tiny Whisper Small
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Fig. 2. The decision module is composed of a feature extractor that encodes
the speech signal into latents that are given in input to the decider. Based on
the output of the decider, the sample is transcribed either by Whisper Tiny or
Whisper Small.

A. Feature Extractor
One of the questions raised in this work is which speech
features are needed to predict how hard to transcribe is an

Uhttps://anonymous.4open.science/r/Big-model-only-for-hard-audios-2823
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Model Encoding Beam-search decoding
Whisper Tiny 0.01T 0.22T
Whisper Small 0.13T 2.49T

TABLE 1

ToTAL MAC (MULTIPLY—ACCUMULATE) OPERATIONS ON
COMMONVOICE TEST SET FOR THE ENCODER AND THE DECODER OF
WHISPER TINY AND SMALL USING A BEAM SEARCH WITH N=8. T
STANDS FOR TERA MACS (10E12))

audio sample. We explore two levels of representations, de-
pending on their closeness to the raw signal waveform. We call
low-level features hand-crafted spectral representations like
Mel spectrograms while high-level features are typically the
outputs of a transformer encoder trained with self-supervision
[5], [15] or parallel text supervision [1]. Both type of features
present their advantage for our double objective of minimizing
transcription cost while keeping low WER: low-level features
are cheap to compute and the high-level ones have proven to
encode more disentangled phonetic features [16].

We observed, however, that the computational cost of repre-
senting speech with high-level features is negligible compared
to the cost of the full ASR pipeline. Indeed, in attention-based
encoder-decoder models, like Whisper, the encoder maps
speech to latent representations while the decoder converts
them to text via beam search. While the encoding only costs
one forward pass through the encoder, the autoregressive
decoding costs multiple forward passes as the length of the
output sequence increases. For instance, we present in Table I
the computational cost of encoding and decoding the test set
of CommonVoice [6] with either Whisper Tiny or Whisper
Small. As expected, it appears that most of the computation
is done in the beam-search decoding (22 and 19 times more
MACs used in decoding than in encoding, for Whisper Tiny
and Whisper Small respectively).

This suggests that decider performance, and not the com-
putation cost of their extraction, should be the main criterion
for input feature selection. Feature performance are evaluated
in the following section.

B. The decider

As shown previously in Figure 1 (b), Whisper Tiny performs
as well or even better than Whisper Small in 52% of the
sentences in the CommonVoice dataset. The decider from
Figure 1 is a neural model that aims to detect these elements
to assign them to the smaller ASR processor. Specifically, for
an audio sample a, the decider is trained on the output of
the frozen feature extractor to predict 1 or 0 according to the
following equation.

(D

Where M7 and Mg are respectively Whisper Tiny and
Whisper Small. It means that the model should learn to predict
0 if the WER obtained with M is lower than the one of Mg.

In a computationally aware context, using a lightweight
module for the decider is crucial, as its computational cost
will be systematically paid at each inference. For instance,
using a transformer stack for the decider would induce a high

IMr . Ms(a) = HWER(MT(a))>WER(Ms(a))



inference cost due to the high dimensionality of the output of
the feature extractor. A convolutional stack, scaling linearly
with the sequence length, does not suffer from those side
effects. Moreover, the locality bias of the convolutions may
be pertinent in this context since errors may occur at localized
segments of the speech sample. Therefore, we opted for a one-
dimensional ResNet [17] for the decider module architecture.

Instead of simply connecting the feature extractor output
to the decider input, we learn a weighted sum of the feature
extractor layers as in [18]. This method exploits the fact that
different layers of a transformer stack encode different types
of information from the audio signal [19].

III. EXPERIMENTS

In this section, we describe the datasets and hyperparameters
used for the training of the decider model. In addition, we
present baselines and toplines that act as comparison points to
our method.

A. Datasets and Settings

In this study, two datasets are considered: LibriSpeech
[20] and CommonVoice 7.0 [6]. The LibriSpeech corpus is
composed of read English speech recordings with 960 hours
for training, two dev splits dev-clean and dev-other and two
test splits test-clean and test-other of 5 hours each. Common-
Voice is a collection of speech samples from worldwide users
recording themselves with their own devices covering a large
variety of age, gender and accents. The English part of the
dataset presents roughly 1 260 hours of recorded audio.

The decider ResNet [17] is composed of 3 ResBlocks of two
convolutional layers, each with 256 feature maps. The output
of the ResNet is average-pooled before going through a linear
layer with one sigmoid output neuron. The feature extractor
remains frozen during the decoder training and a weight is
learned for every layer. All the training details are available
in the accompanying code repository.

B. Baselines and Toplines

We consider as baselines, three methods using threshold-
based decisions. First, based on the well-known impact of
noise on ASR quality, the output of a blind Signal-to-Noise
Ratio (SNR) estimator [21] is used for the decision module.
Here, the decider relies on a simple threshold, determined
by Equal Error Rate (EER): it runs Whisper Small if the
computed SNR is lower than the threshold and uses Whisper
Tiny otherwise. Studies have highlighted the significant effect
of English accents on ASR performance [22]. We therefore
designed a second baseline that consists of using a pretrained
accent detection model [23] to assign audios of rarer accents
to the larger model. For this baseline, the decision module
select Whisper Tiny if the English accent detected is either
American, British, or Canadian.

Finally, inspired by Lugosch and al. [13], a third baseline
explores the use of ASR encoder-decoder token probabilities
as a confidence measure. Precisely, using Whisper Tiny, we
perform full greedy decoding, compute the entropy of the
output probabilities for each time step, and then aggregate with
mean pooling over the time dimension. Here again, the decider
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Feature extractor Decider test-cleanT test-other{ CV test]
SNR [21] thresh. 50.7 47.2 47.0
Accent [23] thresh. n/a n/a 52.0
M logit entropy  thresh. 64.4 63.7 64.5
Mel spectr. ResNet 62.5 55.2 60.0
Wav2Vec2.0 Base ResNet 52.3 57.7 63.9
M encoder ResNet 65.1 65.0 66.4
Mg encoder ResNet 68.0 66.6 68.2
WER M thresh. 84.8 80.7 80.3
TABLE II

F1-SCORES (HIGHER THE BETTER) OF THE SEVERAL DECISION MODULES
ON LIBRISPEECH AND COMMONVOICE TEST SETS. SNR, ACCENT AND
LOGIT ENTROPY ARE BASELINE MODELS THAT ONLY REQUIRE TO FIT A
THRESHOLD ON A VALIDATION SET. WHEN THE DECIDER IS RESNET, A
DEDICATED RESNET IS TRAINED ON EACH OF THE DIFFERENT FEATURE

EXTRACTORS. THE LAST LINE IS A TOPLINE MODEL BASED ON AN
ORACLE THAT PROVIDES THE WER OF WHISPER TINY. M7 AND Mg
ARE RESPECTIVELY WHISPER TINY AND SMALL.

is a threshold on entropy values that is set on a validation set
as for the SNR baseline.

Regarding toplines, we propose two decision modules that
are voluntarily unrealistic in order to show the potential
computational savings in the ideal case. The first topline is an
oracle that knows the best model to chose for any audio sample
(i.e Whisper Small only if its WER for the given utterance is
lower than the one of Whisper Tiny). For the second topline,
we assume that the WER of Whisper Tiny is known in advance
for any audio sample. The decider here is a threshold on WER
values set on a validation set to determine when to use the
larger Whisper model. The threshold is chosen such that it
corresponds to the larger value for which there is no false
negative (i.e. choosing “Tiny” while it performs less well than
“Small”).

IV. RESULTS AND DISCUSSION

This section describes the performances of the different
methods and their associated computational costs.

Decider Test-Cleant  Test-Other?

ResNet 68.0 66.6

ResNet w/o weighted 66.4 66.0

Transformer 66.2 65.4

TL-Transformer 64.4 55.2
TABLE III

ABLATION OF THE DECIDER ARCHITECTURE: LIBRISPEECH RESULTS
(F1-SCORES) FOR THE RESNET WITH AND WITHOUT WEIGHTED INPUTS
SUM, TRANSFORMER ENCODER, AND TIME-WISE LAYER-WISE
TRANSFORMER

A. Fl-score of decision modules

Table II presents the decision modules Fl-scores. It con-
sists, for a collection of audio samples, in the percentage of
times a decision module correctly assigns audio samples to
the appropriate Whisper model as defined in Equation 1.

The three first rows present the Fl-score of the three
baselines. The two first ones achieve close to random per-
formances, which shows that neither SNR nor accent seem
to capture the difficulty of the audio sample. For SNR, we



hypothesize that this is due to the fact that the recordings come
from relatively clean backgrounds, leading to very noisy and
poorly informative estimation from the blind SNR estimator.
On the contrary, logit-level entropy, although computationally
costly gives significantly better results reaching an F1-score of
64.5. It seems to indicate that the internal states of the model
contain useful information about the difficulty of decoding
audio samples.

The second part of the table considers different feature in-
puts to the ResNet decider. As expected, higher-level features
perform better than Mel spectrograms. The encoder of Whisper
Small model performs better than Wav2vec2.0 in our setting
with an Fl-score of 68.2, compared to 63.9% for Wav2Vec2.0
features. This suggests that model-related features are the best
suited to the decision task. Finally, the larger encoder performs
better than the smaller one on the three considered test splits.
Given this performance gap, and the low computation cost of
encoding compared to decoding described in Section II-A, the
remaining experiments will be conducted only using Whisper
Small latent representations as input features to the decider.

The last line shows a topline. The oracle based on a thresh-
old over the WER of Whisper Tiny produces strong results,
showing that the WER of the smaller Whisper version can
be used to allocate audio samples to large models efficiently.
However, blind WER prediction remains a challenging and
computationally costly endeavor [8].

We ablate the architectural choice of the decider model in
Table III. First, removing the learned weighted sum of encoder
layers slightly degrades the Fl-score. Second, using a one-
layer transformer network with a roughly equal number of
parameters to the ResNet raises the decision computational
cost, but also degrades Fl-scores by a couple of percents.
Finally, we implemented a small Time and Layer-wise (TL)
transformer architecture which is composed of one transformer
layer on the encoder layers outputs and another one on
their pooled (time-wise) representations [24]. This approach
performs worse than the simple one-layer transformer archi-
tecture.

B. WER/MACs Trade-off

Table IV shows the trade-off WER/MACs obtained with
our pipeline compared to transcribing speech using Whisper
models. It is important to note that the MACs column shows
the cost of the full pipeline for transcribing the CommonVoice
test set, including the cost of the decision module when
there is one. Table IV starts with the WER/MACsSs of simply
transcribing speech using the different Whisper models with
beam search. Then, we include the logit entropy of Whisper
Tiny, which is the best baseline from Table II. This baseline
increases the WER by an absolute 0.7 points while reducing
the model computational cost by 150G. Our main pipeline
comes next. It uses a decision module composed of Whisper
Small encoder and Resnet. For the latter, we provide scores
for two different decision thresholds: 0.3 and 0.5. We opt for
the larger model when the sigmoid output is higher than the
given threshold. By comparison with simply running Whisper
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Small, selecting a threshold of 0.5 on the sigmoid output of
our decision module gives a 16% higher WER while resulting
in a 35% decrease in MACs. Using a threshold of 0.3 increases
the WER by an absolute 0.37 points while reducing the model
computational cost by 310G MACs (i.e. 12% of the total cost).
Finally, the last 2 lines show the hypothetical improvements
that can be obtained using a perfect decider, or a threshold,
based on a perfect estimation of the WER of M. Not
only do they allow for WER reduction, but they also reduce
significantly the computational load. These toplines confirm
the large potential of the approach and call for further research
on model assignment.

Method WER| MACs|
M 28.1 0.23T
Mp 20.7 0.60T
Mg 13.3 2.62T
M logit entropy 14.0 2.47T
encoder Mg + ResNet @0.5 154 1.72T
encoder Mg + ResNet @0.3 13.7 2.31T
WER M Oracle 12.93 1.954T
Oracle 12.27 1.468T

TABLE IV
AVERAGE WER AND MACS (LOWER THE BETTER) ASSOCIATED WITH
EACH METHOD (INCLUDING THE MACS OF THE DECIDER) ON THE
COMMONVOICE TEST SET. THE TABLE STARTS WITH THE PERFORMANCES
OF M7, M p AND Mg WHICH ARE FULL ASR PIPELINE OF

RESPECTIVELY WHISPER TINY, BASE AND SMALL. M7 LOGIT ENTROPY
IS OUR BASELINE. ENCODER M g+ RESNET IS OUR MAIN CONTRIBUTION

FOR WHICH WE GIVE PERFORMANCES AT TWO DIFFERENT THRESHOLD

VALUES (0.3 AND 0.5). THE LAST 2 LINES ARE OUR TOPLINES.

Figure 3 shows the performances (WER) and computational
costs (MACs) of the intermediate models obtained using our
main pipeline (i.e. Whisper Small encoder and ResNet) and
varying the sigmod threshold. Almost all the points are under
the plotted diagonal, which means that the resulting drop in
performance (relative to the larger model) is systematically
smaller than the gain in computational cost. Whisper Base is
included in Figure 3 as it is an intermediate model between
Whisper Tiny and Small. Its WER/MACs trade-off is only
slightly better than our selection approach. This shows that
the method presented yields nearly equivalent performance to
that of an intermediate model trained entirely from scratch,
saving costly retrainings.

C. Discussion

Failure of the baselines and the encoder layers being the
best-performing input, tend to show that the errors are very
dependent on the ASR model, rather than complexities inher-
ent to the audio signal that would make any ASR model fail
to transcribe.

To investigate this, we compute correlation values between
the WER of a Conformer Large [25] model trained on Lib-
riSpeech 2 and of a Wav2Vec2.0 Base model fine-tuned on
LibriSpeech, with the WER of Whisper tiny, over the samples

Zhttps://huggingface.co/speechbrain/asr-conformer-transformerlm-
librispeech
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Fig. 3. WER/MACs values on the CommonVoice test set for different
pipelines. The blue dots are the values for multiple thresholds using our best
decision module (Whisper Small encoder and ResNet). The crosses correspond
to the Whisper models Tiny, Base and Small respectively. Finally, the black
line is a linear interpolation between the MACs and WER of Whisper Tiny
and Whisper Small

of the LibriSpeech test sets (combined clean and other).

The Pearson correlation coefficient between the WER of the
Conformer model and the WER of Whisper Tiny reaches
only 0.44, while the Spearman correlation is only 0.41. Sim-
ilarly, these two correlation quantities between the WER of
Wav2Vec2.0 and Whisper Tiny reach respectively 0.51 and
0.45. The low correlation values and the weak monotonic
relationship seem to indicate that models have different in-
trinsic failure cases. It confirms, as our results have shown,
that a successful model selection approach needs model-based
inputs. This phenomenon may explains the recent success
observed in the utilization of mixture of experts for ASR [26],
[27].

V. CONCLUSION

In this study, we explored a new, computationally efficient
approach, that selects for an audio sample the most efficient
model among two of different sizes. It can be applied to
interpolate between two trained models of fixed sizes without
additional training, reducing the relative computational cost
more than it degrades performances.
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