
Sound Field Reconstruction Using Physics-Informed
Boundary Integral Networks

Stefano Damiano, Toon van Waterschoot
Dept. of Electrical Engineering (ESAT-STADIUS), KU Leuven, Leuven, Belgium

{stefano.damiano, toon.vanwaterschoot}@esat.kuleuven.be

Abstract—Sound field reconstruction refers to the problem of
estimating the acoustic pressure field over an arbitrary region of
space, using only a limited set of measurements. Physics-informed
neural networks have been adopted to solve the problem by
incorporating in the training loss function the governing partial
differential equation, either the Helmholtz or the wave equation.
In this work, we introduce a boundary integral network for
sound field reconstruction. Relying on the Kirchhoff-Helmholtz
boundary integral equation to model the sound field in a given
region of space, we employ a shallow neural network to retrieve
the pressure distribution on the boundary of the considered
domain, enabling to accurately retrieve the acoustic pressure
inside of it. Assuming the positions of measurement microphones
are known, we train the model by minimizing the mean squared
error between the estimated and measured pressure at those
locations. Experimental results indicate that the proposed model
outperforms existing physics-informed data-driven techniques.

Index Terms—sound field reconstruction, boundary integral
networks, boundary integral equation, physics-informed neural
networks, Helmholtz equation

I. INTRODUCTION

Immersive audio technologies aiming to create a realistic
auditory experience in virtual and augmented reality demand
a precise spatial representation of acoustic environments, in
order to enhance the user engagement [1]. Obtaining direct
measurements in a large space is a demanding process [2],
that can rarely be pursued in practice. As a solution, sound
field reconstruction aims at estimating the acoustic pressure
in areas where direct measurements are not available, given a
limited set of microphone recordings.

The problem has been addressed using model-based and
data-driven methods. Model-based solutions either rely on a
parametric representation of the acoustic scene [3] or describe
the sound field using closed-form solutions to the wave equa-
tion [4], including plane waves [5], spherical waves [6], and
equivalent sources [7]–[9]. These models, while robust and in-
terpretable, are based on assumptions and specific propagation
models, that hinder their capacity to capture the complexity of
the sound field over a considerably large area inside a room.
Data-driven techniques have thus been explored to learn rep-
resentations of the sound field from extensive datasets. Deep
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neural networks have proven effective in learning implicit
representations of the acoustic field [10], [11], achieving good
performance in sound field reconstruction [12], [13]. More-
over, dictionary learning techniques have been investigated to
represent the audio signal as a combination of functions (called
dictionary atoms) learned from data [14]. As a drawback, both
types of data-driven methods necessitate substantial data for
training and lack interpretability.

To bridge the gap between model-based and data-driven
methods, physics-informed machine learning approaches have
been proposed, exploiting prior knowledge of the physical laws
that govern sound propagation in the learning process [15].
Physics-informed neural networks (PINNs) integrate in the
training objective the underlying partial differential equation
(PDE), either the wave equation, in the time domain [16]–[19],
or the Helmholtz equation, in the frequency domain [20]–[22].
This is achieved by introducing in the loss function a term
that penalizes the deviation of the estimated sound field from
the underlying PDE, evaluated at a dense set of collocation
points in the target area. As a result, these networks are trained
using solely a sparse set of observations. Similarly, in [23] a
zero-shot physics-informed dictionary learning technique, not
requiring pre-training data, has been introduced.

Recently, physics-informed boundary integral networks
(PIBI-Nets) have been proposed to solve PDEs [24]–[27].
These models are derived from the boundary element method
(BEM) [28]: rather than directly exploiting PDEs, in fact, the
associated boundary integral equation (BIE) is used to guide
the training. It has been shown that PIBI-Nets outperform
PINNs in the solution of Laplace and Poisson problems [27].

In this work, we investigate PIBI-Nets for sound field
reconstruction. According to the Green’s theorem, the sound
field in a closed area can be expressed, using the Kirchhoff-
Helmholtz BIE, as a function of the pressure density on its
boundary [28], [29]. While the BEM relies on the solution of a
linear system, the proposed method, inspired by [27], employs
a multi-layer perceptron (MLP) to learn the pressure density
at a discrete set of integration points on the boundary of the
reconstruction region. The boundary density is then used to
estimate, by means of the Kirchhoff-Helmholtz BIE, the sound
field inside the region.

While PINNs require a dense set of collocation points over
the reconstruction region, the proposed solution relies on in-
tegration points only on the boundary: the dimensionality and
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complexity of the problem are thus reduced, facilitating train-
ing. Experimental results indicate that the proposed method
outperforms both the physics-informed dictionary learning
approach [23] and a traditional PINN, is more robust to a
decreasing number of available measurements, and requires
fewer integration points compared to the collocation points
required by the PINN. Finally, the proposed method does not
entail prior knowledge on the source position, room geometry
or boundary conditions, and produces an interpretable solution.

II. PROBLEM FORMULATION AND BACKGROUND

A. Problem formulation

Let us consider a reverberant room containing one or more
acoustic sources, and a two-dimensional, source-free region
of space Ω ∈ R2 lying on a horizontal plane inside the
room. We can express by p(r, ω) ∈ C the complex-valued
acoustic pressure in the frequency domain, at position r ∈ Ω
and angular frequency ω = 2πf , where f is the temporal
frequency. The frequency-domain sound field satisfies the
homogeneous Helmholtz equation [29]

(∇2 + k2)p(r, ω) = 0 , (1)

where ∇2 denotes the Laplace operator and k = ω/c, with
c being the speed of sound in air. We sample the acoustic
pressure in Ω using M microphones, whose positions are
indicated by {rm}Mm=1. The sound field measured at the mth
microphone can be expressed as

s(rm, ω) = p(rm, ω) + em , (2)

where em denotes additive measurement noise. We can collect
the M microphone measurements in the vector s ∈ CM ,

s = [s(r1, ω), s(r2, ω), . . . , s(rM , ω)]⊤ . (3)

Our goal is to retrieve the pressure field at arbitrary positions
within Ω, given the available measurements s. For the sake of
readability, we omit the dependency on the frequency ω in the
rest of the paper.

B. Background

Traditional data-driven methods for sound field recon-
struction rely on learning from data a function f(r,θ),
parametrized by the vector θ, that maps spatial coordinates
in Ω to the corresponding pressure value. This function can
be parametrized using a neural network trained to minimize
a data-fidelity loss function, expressing how much the esti-
mated pressure at the positions of the available microphones
{rm}Mm=1 deviates from the actual measurements s. The
problem can be framed as

θ∗ = argmin
θ

Ldata
(
f({rm}Mm=1,θ), s

)
, (4)

where the loss function Ldata usually takes the form of a mean
squared error

Ldata
(
f({rm}Mm=1,θ), s

)
=

M∑
m=1

|s(rm)− f(rm,θ)|2 . (5)

To enable f to effectively generalize to positions where
microphones are not available (i.e., to prevent overfitting),
regularization techniques are adopted in the literature. To
encourage f to produce a physically meaningful sound field,
PINNs introduce an additional term in the loss function,
penalizing solutions that deviate from the underlying PDE.
This PDE loss term can be obtained from (1) as

LPDE =

N∑
n=1

∣∣(∇2 + k2)f(rn,θ)
∣∣2 , (6)

where the PDE is evaluated at a set of N points, usually called
collocation points, that can be arbitrarily picked within Ω,
independently from the M sampling points. The loss function
used to train the neural network becomes

LPINN = Ldata + λLPDE , (7)

where the positive constant λ represents a weighting factor
between the two terms, constituting a hyperparameter of the
model. The advantage of PINNs is that the measurements s
constitute the only data used to train the network, significantly
reducing the need for labeled data, that represents a major
drawback of traditional data-driven techniques.

III. PROPOSED METHOD

Boundary integral networks aim at solving the PDE ex-
ploiting the boundary integral equation. Let us denote the
boundary of Ω as ∂Ω and define the boundary density function
h(y), representing the pressure at some points y lying on
∂Ω. An explicit integral representation of the solution of the
homogeneous Helmholtz equation can then be written as [29]

p(r) =

∫
∂Ω

[
G(y, r)

∂h

∂ny
(y)− ∂G

∂ny
(y, r)h(y)

]
dσy , (8)

where ny denotes the normal to ∂Ω at point y and G(y, r)
is the fundamental solution of the Helmholtz equation. This
solution is represented by the Green’s function, that defines
the transfer function between a source located at position y
and a receiver at position r, and takes the form [29]

G(y, r) =

{
− j

4H
(1)
0 (k∥r− y∥2) 2D case

1
4π∥r−y∥2

ejk∥r−y∥2 3D case .
(9)

Here, j denotes the imaginary unit, ∥ · ∥2 is the ℓ2 norm
and H

(1)
0 is the zeroth-order Hankel function of the first

kind. Note that (8) relates the sound field at arbitrary points
inside Ω to the pressure at boundary points on ∂Ω. Given that
Green’s functions and their derivatives are available in closed-
form, and that ∂Ω is known (in fact, Ω is arbitrarily defined),
inspired by [27] we adopt a neural network to estimate the
unknown boundary pressure distribution h(y). The network
follows the same architecture presented in [27], with 2 fully-
connected layers of 64 neurons each and a single-neuron
output layer. The network takes as input the spatial coordinate
r of a position within Ω and outputs the value h(y), then
used to compute the estimated p̂(r) using (8). As the pressure
is complex-valued, its real and imaginary parts are treated
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Fig. 1. Geometry of the simulated room considered in the experiments.

separately and then combined. To compute the integral, a set of
Nint integration points are selected on ∂Ω and (8) is discretized
similarly to [27] to compute the pressure within Ω. To train
the neural network, the sound field at the positions {rm}Mm=1

of the M microphones is estimated using PIBI-Net, and the
deviation from the measured pressure is minimized using a
mean squared loss function of the form

LPIBI =

M∑
m=1

|s(rm)− p̂(rm)|2 , (10)

where p̂(rm) indicates the pressure estimated using PIBI-Net
as in (8). Note that, differently from the PINN loss (7), LPIBI
has a unique term and does not contain any hyperparameter:
thus, PIBI-Net has one hyperparameter less than PINN.

The boundary integral network comes with two main ad-
vantages over PINNs. First, as the predicted sound field is
computed using (8), it always satisfies the Helmholtz equation:
thus, the proposed model is interpretable and produces physi-
cally meaningful solutions. Note also that the neural network
output h(y) is constrained to be in the solution space of (8)
which, as discussed in [24], reduces the complexity of the
problem and leads to an improved convergence. Second, while
PINNs necessitate collocation points across the entire domain
Ω, PIBI-Nets require integration points only on its boundary
∂Ω, which reduces by 1 the dimensionality of the problem.
Consequently, as will be shown in Sec. IV, a PIBI-Net achieves
better performance with a lower M and with fewer integration
points than the collocation points needed by a PINN.

IV. EVALUATION

To assess the performance of the proposed method, we
implement it in Python1 and run an experimental campaign
on simulated data. Using pyroomacoustics [30], we create a
2D rectangular room with size [5, 4]m, having T60 = 0.4 s and
containing a single, omnidirectional source located at position
[3.2, 1]m. We choose our analysis region Ω to be a square with
2m side, with its bottom right corner at position [0.5, 0.5]m.

1Code available: https://github.com/steDamiano/pibi-sfr

In this area, we define a grid of 30×30 equally spaced points,
simulate room impulse responses (RIRs) between the source
and these points, with a sampling frequency fs = 16 kHz, and
transform them to the frequency domain using the fast Fourier
transform (FFT) with 1024 frequency bins. The simulated
scenario is illustrated in Fig. 1. Note that this 2D geometry
corresponds to a shoebox room having totally absorbing ceil-
ing and floor, with the source and all microphones located on
the same horizontal plane.

To evaluate the proposed method, we use two different base-
lines: the physics-informed dictionary learning method [23]
(PIDL) and a physics-informed neural network (PINN) having
the same architecture of the proposed method (PIBI), described
in Sec. III. The PIDL can be directly applied to the grid
defined in the reconstruction area, and its hyperparameters are
set as in [23]. We implement the PINN and PIBI networks in
Pytorch [31] and train them for 5 000 steps using the Adam
optimizer, a learning rate of 0.001, and the loss functions
defined in (7), with manually tuned λ = 0.001, and (10),
respectively. Both architectures have 8 577 parameters.

As we consider a source-free reconstruction region, we
adopt the homogeneous Helmholtz PDE (1) for PINN, and its
boundary integral representation (8) for PIBI. When training
the PINN, the partial derivatives of the PDE are computed
using automatic differentiation, available in Pytorch.

We adopt two different evaluation metrics: the normalized
mean squared error (NMSE) in dB scale

NMSE = 10 log10

(∥p− p̂∥22
∥p∥22

)
, (11)

where p contains the measured pressure and p̂ the predicted
pressure at the 30× 30 grid points, and the normalized cross-
correlation (NCC)

NCC =
|p̂Hp|

∥p̂∥22∥p∥22
, (12)

where (·)H indicates the Hermitian transpose. The NCC
measures the similarity between the predicted and ground truth
pressure, expressed by a value in the range [−1, 1], where 1,
0, and −1 correspond to perfect similarity, no correlation, and
perfect anti-correlation, respectively [23].

We compare the performance of PIDL, PINN and PIBI for
varying frequency, number of microphones M , and number
of collocation/integration points. We perform all experiments
using a 10-fold procedure, where we randomly select different
measurement microphones in each fold, and report the average
and standard deviation of the results. In all experiments, the
real and imaginary parts are reconstructed separately and
combined to obtain the total reconstructed pressure. Follow-
ing [27], we first choose Ncoll = 200 collocation points in
the reconstruction region for PINN, randomly selected at each
iteration, and Nint = 200 equally spaced integration points
on the boundary for PIBI. We randomly pick M = 50
microphones from the defined grid and analyze the recon-
struction performance across frequencies ranging from 50Hz
to 1050Hz. In Fig. 2a and Fig. 3a we report, respectively,
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Fig. 2. Mean (solid line) and standard deviation (shaded region) of the NMSE scores, obtained with the baselines PIDL and PINN and the proposed method
PIBI when varying: (a) the frequency; (b) the number of measurement microphones M ; (c) the number of collocation (PINN) or integration (PIBI) points.
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Fig. 3. Mean (solid line) and standard deviation (shaded region) of the NCC scores, obtained with the baselines PIDL and PINN and the proposed method
PIBI when varying: (a) the frequency; (b) the number of measurement microphones M ; (c) the number of collocation (PINN) or integration (PIBI) points.
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Fig. 4. Real part of the sound field at f = 625Hz on the 30× 30 point grid, obtained with the PIDL and PINN baselines and the proposed method PIBI,
and compared to the ground truth. The problem is solved using M = 50 measurements with microphones randomly arranged as in the leftmost figure.

the NMSE and NCC scores for the three models. All models
show a degradation of the performance as frequency increases:
PIBI consistently outperforms PIDL at all frequencies on both
metrics, and significantly outperforms PINN for frequencies
higher than 350Hz. In particular, the NCC score of PIBI
is close to 1 (i.e., perfect similarity) across the entire range,
whereas for PINN it gets close to zero (i.e., no correlation) for
frequencies higher than 800Hz. In Fig. 4, we show the real
part of the sound field at 625Hz, reconstructed in Ω by the
three models and compared with the ground truth for M = 50.

We then fix the frequency to 390Hz and set Ncoll = Nint =
200, and progressively reduce the number of measurement
microphones; we report the performance of the three models
in Fig. 2b and Fig. 3b. All methods exhibit a degradation of
the performance as the number of available measurements
decreases. Nonetheless, PIBI is more robust than the two
baselines to a decreasing number of available microphones,
outperforming them on both metrics for M > 15 microphones.
Note that PINN achieves its best NMSE with M = 45: to

reach the same score, PIBI requires only 25 microphones
instead. This indicates that the proposed PIBI method is more
data-efficient than traditional PINNs. As discussed in Sec. III,
whereas PINN relies on collocation points in the reconstruc-
tion region Ω, PIBI only requires integration points on the
boundary: this results in a reduction of the dimensionality of
the problem, facilitating the convergence of the network and
increasing its robustness to a lower number of microphones.

We finally fix the frequency to 390Hz and the number of
microphones to M = 50, and vary the number of collocation
and integration points for PINN and PIBI, respectively. We
report the results in Fig. 2c and Fig. 3c. The performance
of PIDL is also reported for reference (horizontal line): as
PIDL does not require collocation or integration points, its
performance is constant in this experiment. Both PINN and
PIBI outperform PIDL for all considered cases. Moreover, the
figures show that, for each considered number of collocation
(integration) points, PIBI outperforms PINN on both metrics.
Once again, PIBI relies on points lying on the boundary of
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Ω. Thus, for a given choice of Ncoll = Nint, the density of
integration points used in PIBI is higher than that of colloca-
tion points used in PINN, leading to a better performance. In
other words, PIBI demands less integration points than PINN
requires collocation points, resulting in a complexity gain.

These results indicate the potential of the proposed approach
for sound field reconstruction. Imposing a physical constraint
on the boundary of the target domain, rather than on points
inside of it, helps to reduce the complexity of the problem
and leads to improved performance and data-efficiency over
PINNs. Moreover, the proposed approach has the advantage of
yielding physically interpretable results that always represent
solutions to the Kirchhoff-Helmholtz BIE.

V. CONCLUSIONS

In this paper, we proposed a sound field reconstruction
method based on a boundary-informed neural network. By
describing the sound field using the Kirchhoff-Helmholtz
boundary integral equation, we adopted a multi-layer per-
ceptron to retrieve the boundary pressure distribution, then
employed to reconstruct the sound field at arbitrary positions
within the analysis region. Simulation results indicate that
the proposed approach outperforms both physics-informed
dictionary learning and traditional PINNs on a broad frequency
range and is more robust to scarcity of available measurements.
Moreover, it demands fewer integration points compared to the
collocation points required by PINNs, leading to a reduced
problem complexity. Future work will focus on the analysis
of regions containing sources (i.e., where the inhomogeneous
Helmholtz equation holds) and on the introduction of explicit
boundary conditions in the model. Finally, tests on real data
will be carried out.
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