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Abstract—We consider the problem of reconstructing the
sound field in a room using prior information of the boundary
geometry, represented as a point cloud. In general, when no
boundary information is available, an accurate sound field
reconstruction over a large spatial region and at high frequencies
requires numerous microphone measurements. On the other
hand, if all geometrical and acoustical aspects of the boundaries
are known, the sound field could, in theory, be simulated without
any measurements. In this work, we address the intermediate
case, where only partial or uncertain boundary information
is available. This setting is similar to one studied in virtual
reality applications, where the goal is to create a perceptually
convincing audio experience. In this work, we focus on spatial
sound control applications, which in contrast require an accurate
sound field reconstruction. Therefore, we formulate the problem
within a linear Bayesian framework, incorporating a boundary-
informed prior derived from impedance boundary conditions.
The formulation allows for joint optimization of the unknown
hyperparameters, including the noise and signal variances and
the impedance boundary conditions. Using numerical experi-
ments, we show that incorporating the boundary-informed prior
significantly enhances the reconstruction, notably even when only
a few hundreds of boundary points are available or when the
boundary positions are calibrated with an uncertainty up to 1
dm.

Index Terms—Sound field reconstruction, spatial audio mod-
elling, Bayesian estimation

I. INTRODUCTION

Applications involving sound field control in a defined
region, such as spatial active noise control [1] and sound zone
generation [2], depend on accurately reconstructing the sound
field from nearby microphone measurements. In general, this
is a challenging problem, in particular when a large region and
high frequencies are of interest. In such settings, the number
of parameters required to accurately represent the sound field
is typically orders of magnitude greater than the number of
available microphone measurements, necessitating the use of
some form of regularization to allow for a unique solution.

Given the importance of the problem, various ways to
introduce regularizing prior information has been studied in
the recent literature [3]. For example, when using a linear
setting with plane wave basis functions [4], free-field Greens
functions [5], and/or spatial Fourier basis functions [6], the
most common approach, by far, is using Tikhonov regulariza-
tion [7], corresponding to an assumption of i.i.d. normal priors
on the coefficients. While these assumptions are well suited
for a diffuse sound field [8], sparse priors has also been used
to promote a directional sound field [4], [9]. Additionally, for
nonlinear models or linear models with basis functions that

by construction do not satisfy the Helmholtz or wave equa-
tion, regularizers have been introduced to enforce pointwise
adherence to the differential equation [10], [11]. Regardless
of the type of regularization, the information provided by
the microphone measurements is limited. In contrast, in an
idealized scenario where the source position, source signal,
speed of sound, boundary geometry, and acoustic properties
are all known, the sound field can be computed as a forward
problem, which is, for instance, exploited in simulation-based
reconstruction methods [12].

Such methods have been extended to both time- and
frequency domain formulations for the settings where the
boundary conditions are either unknown [13], [14], partially
unknown [15], the source positions are unknown [16], or for
when both the source position and boundary conditions are
unknown [17]. Regrettably, such simulation-based formula-
tions require complete and precise calibration of the boundary
geometry for the forward-problem to be meaningful. Even if
possible to measure, it would typically be a both expensive
and time-consuming process to obtain this information.

In contrast, partial information of the boundary-surfaces can
easily be obtained using consumer-grade devices, such as a
smartphone camera capturing just a few photos of a room
[18]. Although the reconstructed point cloud may be coarse,
uncertain, or incomplete, it can still provide valuable infor-
mation that may be exploited for sound field reconstruction.
The use of such partial boundary data has recently been ex-
plored in virtual reality applications [19]–[22], demonstrating
successful reconstruction of perceptually convincing binaural
signals when evaluated using metrics such as reverberation
time, speech intelligibility, and early decay time. However,
in sound field control applications, as studied here, precise
reconstruction of the sound field is essential.

Aiming to improve the accuracy of the sound field recon-
struction, this work proposes to regularize the sound field
reconstruction problem using a three-dimensional (3D) point
cloud that partially represents the boundaries of the room. To
do so, we formulate the problem in a linear Bayesian frame-
work, deriving a prior distribution for the linear coefficients
from impedance boundary conditions [23]. Unknown hyper-
parameters, such as the signal and noise variances and the
boundary-related parameters, are jointly optimized. When the
hyperparameters are known, the method has similar computa-
tional complexity as other Gaussian process-based estimators
[3], and can thus be used in downstream applications related
to sound field control (see for example [1], [24]).
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II. PROBLEM FORMULATION

Consider a sound field u : R3 → C, for a given frequency
ω, that is measured using M microphones, such that

y = u+ ε, (1)

where u = [u(r1), . . . , u(rM )] denotes the sound field at the
microphone positions rm ∈ Ω ⊆ R3, for m = 1, . . . ,M ,
and ε = [ε1, . . . , εM ] is the measurement noise, here assumed
to be well modelled as an independent circularly symmetric
zero-mean Gaussian noise, i.e.,

εi ∼ CN
(
000, σ2I

)
, (2)

where I denotes the identity matrix of appropriate dimension.
The region Ω is assumed to be source-free, such that the sound
field satisfies the homogeneous Helmholtz equation

∇2u(r) + k2u(r) = 0 ∀ r ∈ Ω, (3)

where k = ω/c denotes the wave number and c the speed of
sound. The sound field is here represented using a superposi-
tion of plane wave functions, also known as the Herglotz wave
functions [25], defined as

u(r) =

∫
ηηη∈S2

ũ(ηηη)eikηηη
T rdηηη, (4)

where ũ : S2 → C is the complex source distribution on the
unit sphere S2 in R3. The representation in (4) satisfies (3)
and any solution to (3) can be arbitrarily well approximated
by the Herglotz wave functions [26].

Furthermore, we assume a subset of the boundary of the
region, denoted B ⊆ δΩ, to consist of a locally reacting
surface with acoustical properties independent of the angle of
incidence. Under these assumption, the acoustical properties
of the boundaries can be characterized in terms of the specific
impedance β : B → C using the impedance boundary
conditions [23]

β(r)n(r) · ∇u(r) + iku(r) = 0 ∀ r ∈ B, (5)

where n : R3 → S2 is the outward normal to the surface.
In this work, we consider the problem of reconstructing the
sound field in the region Ω, given the measurements in (1),
the microphone positions {rm}m=1,...,M , the wave number k,
and the set of boundary points B with corresponding normals.

III. PROPOSED METHOD

In order to introduce the partial boundary information in
the sound field reconstruction problem, we here employ a
Bayesian problem formulation [3], [27]. Let

y = Φα+ ε, (6)

be the discretized Herglotz representation of the measurement
model in (1), where α = [α1, . . . ,αP ]

T ∈ CP denotes
the unknown vector of coefficients and [Φ]m,p = ϕp(rm),
where ϕp(r) = eikpr is a plane wave with kp = kηηηp, with
ηηηp ∈ S2 denoting the direction of arrival. The likelihood of
observing y, given the parameters, is given by y|σ2,α ∼

CN
(
Φα, σ2I

)
. A naive approach to estimate the sound field

would be to maximize the likelihood function of α, which
corresponds to solving the problem

minimize
α∈C

1

2σ2
||y −Φα||22. (7)

However, this problem is typically ill-posed since M ≪ P in
general. Instead, prior information about the sound field can be
included by maximizing the a posteriori distribution, given by
p(α|y, σ2) ∝ p(y|α, σ2)p(α). When the prior distribtuion is a
zero-mean circularly symmetric complex normal distribution,
i.e.,

α ∼ CN (000,Σα), (8)

the maximum a posteriori estimate is given as the solution to

αMAP = arg min
α∈CP

1

2σ2
||y −Φα||22 +αHΣ−1

α α, (9)

which has the closed form expression

αMAP =
1

σ2

(
1

σ2
ΦHΦ+Σ−1

α

)−1

ΦHy. (10)

Using (10), the predictive distribution of the sound field at
position r is given by û(r) ∼ CN

(
ũ(r), τ2(r)

)
, where [27]

ũ(r) = ϕϕϕH(r)ΣαΦQ−1y, (11)

τ2(r) = ϕϕϕH(r)Σαϕϕϕ(r)−ϕϕϕH(r)ΣαΦQ−1ΦHΣαϕϕϕ(r),
(12)

where ϕϕϕ(r) = [ϕ1(r), . . . , ϕP (r)]
T and

Q =
(
σ2I+ΦΣαΦ

H
)
. (13)

From (11) and (12), one may note that the reconstructed
sound field depends on the choice of Σα, with the well-known
Tikhonov estimator corresponding to the choice Σα = σ2

αI. As
an alternative, sound fields that consists of a sparse directivity
pattern has also been modelled using a covariance structure
on the form Σα = diag(

[
σ2
α,1, σ

2
α,2, . . . , σ

2
α,P

]
) [28].

A. Introducing a boundary-informed prior distribution

Although the reconstruction in (11) inherently satisfies (3)
due to the plane wave model, we further incorporate the
remaining boundary information from (5) by formulating a
prior distribution for α. In this preliminary work, for clarity
of presentation, we assume all boundary points to share the
same specific impedance, i.e., β(r) ≡ β, ∀r ∈ B. By
differentiating the plane-wave model along the normal, (5) can
be reformulated as (

βΨ+ Φ̃
)
α = 0 (14)

where [Ψ]b,p = ikT
p n(rb)e

ikT
p rb and [Φ̃]b,p = ikeik

T
p rb , for

p = 1, . . . , P and b = 1, . . . , B, where B is the cardinality of
the set B. In principle, the boundary constraint (14) could be
included as a linear constraint in (7). However, in practice
the resulting solution will only approximately satisfy the
constraint in (14), due to, for example, uncertainties in the 3D
point cloud detailing the boundary. Therefore, we instead let
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Fig. 1: Illustration of the experimental setup.
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Fig. 2: Illustration of the NMSE as a function of the number
of boundary points used to form the regularizer.

(
βΨ+ Φ̃

)
α ∼ CN (000, Iσ2

α), which corresponds to assigning
the prior

CN

(
000, σ2

α

((
βΨ+ Φ̃

)H (
βΨ+ Φ̃

))−1
)

(15)

to α. However, when only a few boundary points are used, the
matrix (βΨ+Φ̃)H(βΨ+Φ̃) will be rank deficient. Therefore,
we propose to assign the prior distribution in (8) with the
covariance defined as

Σα = σ2
α

(
I+ µ

(
βΨ+ Φ̃

)H (
βΨ+ Φ̃

))−1

. (16)

Note that although we in this work use a plane-wave model
to represent the field, similar priors could be formulated for
other basis functions using a similar approach. Also, note that
the maximum a posteriori estimate in (10) formed using this
prior coincides with the Tikhonov estimator when µ = 0.
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Fig. 3: Illustration of the robustness with respect to constant
perturbations in the assumed boundary point positions.

B. Joint estimation of hyperparameters and impedance bound-
ary conditions

In this section, we consider a Bayesian approach for estimat-
ing the unknown hyperparameters [29]. The hyperparameters
are estimated by maximizing their posterior distributions,
which corresponds to maximizing the marginal likelihood (see
for example [27] for a detailed derivation)

arg min
β∈C,σ2,σ2

α,µ∈R+

1

2
yHQ−1y +

1

2
log (|Q|) , (17)

where |Q| denotes the determinant of Q. To account for
the non-negativity constraints and introduce the fact that the
parameters can span several orders of magnitude, the variables
are reparametrized as σ2 = ea, σ2

α = eb, µ = ed, and β = eη ,
resulting in the unconstrained problem

J(θ) = arg min
η∈C,a,b,d∈R

1

2
yHQ−1y +

1

2
log (|Q|) , (18)

where θ = {a, b, d, η}. The non-convex problem in (18) may
be solved using a conjugate-gradient based solver with Polak-
Ribière search directions [30], as implemented in [31]. The
gradients with respect to a parameter θi in the covariance
matrix Q can efficiently be computed by straight-forward
extension of the result in [27] for the complex-valued setting,
resulting in

∂

∂θi
J(θ) = −1

2
trace

((
ξξH −Q−1

) ∂Q

∂θi

)
, (19)

where ξ = Q−1y. The partial derivatives of Q with respect
to each hyperparameter are stated in the appendix.

IV. NUMERICAL EXPERIMENTS

In the following, we want to understand the limits for
when the use of a boundary-informed prior is useful and,
as a result, give suggestions on the calibration accuracy that
is required when collecting a real dataset for this purpose.
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Fig. 4: Illustration of the robustness with respect to constant
perturbations in the assumed microphone positions.

Therefore, sound fields are simulated in a controlled setting
using the image source method (ISM) as implemented in [32]
with the speed of sound 343m/s and the sampling frequency
8kHz. Since the ISM simulation only is guaranteed to satisfy
the boundary conditions in (5) exactly as β → ∞, that
is, in the idealistic setting of lossless reflections [23], the
reflection coefficients are set to 0.95 as an approximation. Note
that this results in a slight mismatch between the model in
Section III and the simulation, making the evaluation setting
less favorable for the proposed method. The experimental
setup is illustrated in Figure 1, including 100 microphones
that are uniformly distributed in half of a shoebox room
except in a spherical region of radius 0.5 m, where instead 20
validation positions are sampled uniformly random. Circularly
symmetric Gaussian noise is added to the signals to obtain a
signal-to-noise ratio of 20dB for a frequency of 300Hz. The
reconstruction is measured in terms of the normalized mean
squared error, defined as

NMSE =
1

JN

J∑
j=1

N∑
n=1

|uj,n − ûj,n|2

|uj,n|2
, (20)

where ûj,n and uj,n denote the predicted and true signal for
the jth validation point and nth simulation, for N = 10
Monte-Carlo simulations. To give the results more meaning,
we include three benchmark methods. First, the naive recon-
struction is formed using the microphone signal located nearest
to the reconstruction position, denoted Nearest. Secondly,
the Tikhonov estimator is constructed by setting µ = 0 in
(16), which, compared to the proposed method provides an
interpretation of the impact of the boundary information in
the prior covariance in (16). Finally, also the Lasso estimate is
obtained by adding the regularizing term λ||α||1 to (7). For all
methods, 1000 plane waves distributed on a Fibonacci lattice
are used [33]. Firstly, we study how the number of boundary
points affects the reconstruction. The boundary points are
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Fig. 5: Illustration of the NMSE of the reconstruction for
various frequencies.

uniformly sampled on the surface of the shoebox room with
outward normals, as illustrated in Figure 1, with the results
shown in Figure 2. Notable is that the reconstruction error
decreases rapidly when including the first few hundreds of
points and flats out when about 1000 boundary points are
used, which therefore is used in the following experiments. Of
practical interest is also studying the robustness with respect
to the assumption of the boundary point and microphone
positions. In order to do so, a constant perturbation of random
direction is introduced to each boundary point and microphone
position in Figures 3 and 4. In Figure 3, it is worth noting that
Proposed obtains a lower reconstruction error as compared the
other methods for boundary position errors up to as high as
1 dm. This result open up the possibility of being able to use
a point cloud representation of the boundary obtained from
everyday sensors such as, for example, the camera sensor in
a smartphone, a case which will be examined in more detail
in further work. Figure 4 illustrates that Proposed achieves a
lower NMSE than the other methods even in the presence of
large errors in the assumption of microphone position. This
is not obvious, since Proposed includes an assumption of the
microphone position in both the observation model and the
prior, while the other models only include the assumption of
the microphone positions in the observation model. However,
the result indicate that the error due to the error in the observa-
tion model dominates the error of the reconstructed sound field
in this case. In general, the results indicate that the boundary
information is of significance value, even when only partial or
uncertain information of the boundary is available, which is
also confirmed for a wide frequency range in Figure 5.

V. CONCLUSION

We introduce a boundary-informed prior distribution for
the reconstruction of a sound field from microphone mea-
surements. Compared to simulation-based approaches, which
require the full geometry, we show that boundary information
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is useful also in settings where the point cloud representation
is coarse or uncertain. Simulated numerical experiments in
reverberant rooms both illustrate the great potential benefit of
this information, and serves as a guideline for the required
accuracy when collecting data for a real experiments.

APPENDIX

GRADIENTS OF Q WITH RESPECT TO HYPERPARAMETERS

The gradient of Q in (13) with respect to a and b are
given by ∂

∂aQ = σ2I and ∂
∂bQ = ΦΣαΦ

H , respectively.
Furthermore, the gradients with respect to d is given by
∂
∂dQ = −σ2

αµB
HB, where

B =
(
βΨ+ Φ̃

)(
I + µ

(
βΨ+ Φ̃

)H (
βΨ+ Φ̃

))−1

ΦH .

To compute the gradient with respect to the complex-valued
variable η, we note that Q is not a holomorphic function with
respect to η due to the conjugation of η in (16). Therefore,
the derivative does not exist in the classical sense, but may,
using Wirtinger calculus, be expressed as the derivative with
respect to η∗ (see, e.g., [34]), yielding

2
∂

∂η∗
Q = −2σ2

αµC
H
(
|β|2ΨHΨ+ β∗ΨHΦ̃

)
C (21)

where C =
(
I + µ(βΨ+ Φ̃)H(βΨ+ Φ̃)

)−1

ΦH .
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