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Abstract—Many sound field reproduction methods require
knowledge of the spatial covariance, a quantity derived from
room impulse responses in a region. The spatial covariance is
commonly computed as the sample covariance, even though
this often leads to poor estimates in practice due to spatial
undersampling. This paper proposes a method for estimating
sound fields generated by multiple sound sources, with the goal
of improving spatial covariance estimation. The method includes
prior knowledge, which allows for previous covariance estimates
to be combined with new sound field measurements. A sound
zone control problem is considered where the estimated spatial
covariance is used to generate sound in a simulated room.
The experiment shows that the proposed method provides an
improvement in sound field reproduction performance when both
sound field data and spatial covariance data can be combined.

Index Terms—sound field estimation, spatial covariance, kernel
ridge regression, sound field reproduction, spatial audio

I. INTRODUCTION

Sound field reproduction tasks such as sound zone control
[1] or spatial audio reproduction [2] require knowledge of the
acoustic environment, in particular room impulse responses
(RIRs) from each source to one or more regions in the
room. Reproducing sound with incorrectly estimated RIRs can
significantly affect the reproduction performance [3]-[5].

The spatial covariance, a quantity derived from the RIRs,
appears naturally in many sound field reproduction methods
[6]-[8]. Some methods do not use the RIRs at all, but rely
only on the spatial covariance [9]-[11]. The spatial covariance
used in sound field reproduction is a relationship between
the emitted sound by several sound sources, averaged over a
region in the room. This is in contrast to the spatial covariance
in sound field estimation, which is a relationship between
received sound at different positions [12]-[14].

The spatial covariance is commonly computed as the sample
covariance of the RIRs at a set of measurement points. Such
an approach requires a dense and evenly spaced set of mea-
surements, which is time-consuming to collect. In addition, the
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variation of the acoustic environment over time means that the
time-consuming process has to be repeated periodically. Sound
field interpolation can be applied to mitigate the problem
of too few measurements [15]. However, essential features
are missing in existing methods, such as the combination of
sound field measurements with prior knowledge of the spatial
covariance.

For sound field estimation, it has been demonstrated that
enforcing physical constraints leads to better estimates [12].
Because the spatial covariance is derived from sound fields,
there is a set of physical constraints inherited from the sound
fields which the spatial covariance should satisfy. Therefore, it
could be advantageous to enforce these inherited constraints in
the spatial covariance estimation process. In addition, the con-
tinuous region where the spatial covariance is defined should
be taken into account, not only the discrete measurement
points.

In this paper a spatial covariance estimation method us-
ing kernel ridge regression is proposed. The approach is a
generalization of [12], estimating sound fields associated with
multiple sources. In contrast to existing methods, the proposed
methods allows for the inclusion of a prior spatial covariance
in addition to the sound field data. The proposed method is
evaluated on sound zone control in a simulated room, demon-
strating improved sound zone control performance. Code asso-
ciated with the proposed method is released under a permissive
license at https://github.com/sounds-research/aspcol.

II. PROBLEM STATEMENT
A. Data model

Consider a sound field reproduction system with S sources
in a room, intended to reproduce sound in the source-free
region 2 C R3. Each source has an associated room impulse
response to each point » € € for a given time period,
which can be modelled as a finite impulse response filter
that is assumed constant over the period of the estimation
process. The sound fields associated with all S sources can
be expressed as a vector-valued function w : Q — C2,
representing a single frequency-domain component of the RIR
as a function of » € Q. The quantities will henceforth be
dependent on frequency, but the frequency will be omitted
from the notation for brevity.
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The sound field is measured at the M points
r1,72,...,7y € €. All sources are not necessarily
measured at each point, which is relevant when sources are
added to the system at different times, such as for ad-hoc
arrays. For point r,, the sound fields for S,, sources are
measured, where 1 < S, < S. It can be represented by a
selection matrix P, € RS*5  which is defined as

PT

ey

where 7 is an index set of the sources measured at r,,, and
e; € RS for j € N is the standard basis vector whose jth
element is 1. The available data is

ez, ez, ezs |,

hy = Pou(ry) + €m, m=1,..., M, )
where €, € C™ represents additive noise.
B. Spatial covariance
The considered spatial covariance R € S;(.9) is
1 H
R=— [ u(r)u(r)" dr, 3)
9] Ja

where H denotes the Hermitian transpose, || denotes the
volume of the region (2, and S, (.9) refers to the set of positive
definite matrices in C%*“. Note that in the sound zone control
literature, R is often defined as the complex conjugate of (3)
[15, Eq. 13]. The task considered in this paper is to estimate
the covariance (3) using data of the form (2).

III. SPATIAL COVARIANCE ESTIMATION
A. Sound field model

The sound field can be estimated by solving optimization
problems on an appropriate reproducing kernel Hilbert space
(RKHS) H, which will be formulated in this section. A more
detailed account of the model can be found in [12], [16]. A
sound field w € H associated with all sources in a source-free
region can be expressed using the Herglotz wave function as

w(r) = / e~ dg(d) dd,
SZ

where i is the imaginary unit, and @ : S*> — C? is a square-
integrable function on the unit sphere S? representing the
complex weight of each plane wave. The direction deS?is
the incoming plane wave direction. The wavenumber is k = %
where w is the angular frequency and c is the speed of sound.

The RKHS H can be constructed from the set of functions
of the form (4) along with the inner product

(. 0) 3 = /S o(d)"W (d)" a(d) dd.

“4)

&)

where W : §? — S, (S) is a directional weighting function.
This directional weighting is a generalization of the weighting
considered in [17], [18], and equivalent when W is chosen to
be diagonal. Exploring choices of W is not the focus of this
paper, so a diagonal weighting will be assumed.

The RKHS H is characterized by its kernel function

P : QxQ — 8.(5), which satisfies the reproducing
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property (u(r),c)cs = (u,['(-,7)c)y for all ¢ € C¥, where
{a,c)cs = cMa is the standard Euclidean inner product. The
kernel function is
C(rr)= [ W(d)e *r—)"dgq, (6)
SQ
which can in general be solved by numerical integration. When
no weighting is used, the kernel function reduces to I'(r, r’) =
Is jo(K||r — 7'||2), where Is € R9*S is the identity matrix
and j, is the zeroth order spherical Bessel function of the first
kind.

B. Kernel ridge regression

The sound field w € H can be estimated by solving the
optimization problem

M
3 — hm _ m 2 A 2 . 7
min C=3 | wlrn) 2+ w2, @)

m=1

Consider the linear evaluation operator M,. :H — Cn
defined as M, u = P,,u(r,,). According to the representer
theorem [19], a minimizer of (7) has the form

M
m = Z (7, 7m) P, am,

m=1

M
a(r) =Y M; a

m=1

®)

where a,,, € C°m is a set of unknown parameters, and ./\/ljim :
CSm — H denotes the Hilbert space adjoint of M,. .

Inserting (8) into the optimization problem (7) results in
a finite-dimensional optimization problem in terms of the
parameters a (a1,as,...,ay) € CMs where My =
ZM Sm- The optimal solution is

m=1

a= T+ 'h. 9)

The vector h = (hy,ha, ..., hy) € CMer represents all
available data. The Gram matrix I' € CMerxMerr i defined by
its m, m/th block Ty = P I (7, P ) Pl € Cm XS,

The optimal parameter estimate (9) can be inserted into
(8) to obtain a sound field estimate for any r € ). When
the directional weighting and hence the kernel function is
diagonal, (9) is equivalent to applying the interpolation method
in [12], [16] for each source individually.

C. Spatial covariance estimate

Assuming a diagonal kernel, the spatial covariance can be

expressed in terms of the parameters as
1
R=AKA" with K = @/ L(r)(r) dr. (10)
Q

The kernel values are represented by I'(r) € CMerxS —
[C(r,r)" P F(’r,rM)TleT, and the parameter
matrix is A [P diag{a:} Py, diag{an}] €
C5*Mer_ The kernel weighting matrix K can be calculated
efficiently when W (d) = I and (2 is a ball [20, Section 3.2],
or with numerical integration otherwise.



IV. SPATIAL COVARIANCE ESTIMATION WITH PRIOR
KNOWLEDGE

Given that the acoustic environment can change over time,
there could be a previous estimate of the spatial covariance
R, available. Alternatively, there could be prior knowledge
obtained from theoretical or data-driven methods. It would
be desirable to use such prior information to obtain a better
estimate with fewer measurements, reducing the effort in
updating the estimates according to changes in the acoustic
environment. Such an optimization problem can be written as

[ wtryun) i, Ry).

1

11

min C +~vJ (
ucH
where C is the cost function of (7), v € R>¢ is a weighting
parameter, J : S4(5) x S4(5) = Rxg is a covariance fitting
function, and Ry € S (S) is the prior covariance.

As demonstrated in (8), the optimal solution of a kernel
ridge regression problem is given by linear combinations of
the kernel function evaluated at the same points as the function
wu is evaluated in the cost function. Due to the integral, (11)
is a cost function with an infinite number of evaluations at
all points in 2, which will not lead to a practical solution
following the same approach.

The proposed solution is to apply the representer theorem
[19] to an approximation of the original optimization problem,
defined as

. 1 H
min € +97 (5 Zjl u(ro)u(ro, Ry ), (12)
for some set of points 7, € Q for v =1,...,V. The resulting
form of the function estimate instead of (8) is then
M+V
u(r) = Z L(r,7m)P,) am, (13)
m=1

where a,, € C% and P, = Igforallm=M +1,...,M +
V. The points r,, for 1 < m < M are points in {2 where
sound field measurements were taken, while the points for
M+1<m< M+ V are virtual points that can be chosen
within . The expression in (13) can be inserted into (11) to
obtain a finite-dimensional optimization problem in terms of
a € CMert5V | The spatial covariance can then be computed
as in (10), with T'(r) € CMertSV)xS and A € C5*(MertSV)
defined analogously.

Two covariance fitting functions are considered, defined as

jFrob(Rv R/) = ||R - RI”%«“

, 14
Jwass(R,R) =t(R+ R —2(R*RR'?)?). (1

The squared Frobenius norm Jg.p is fast to compute, but
is not a natural distance for positive definite matrices. The
Wasserstein distance Jy,s 1S more complex to compute, but
has a closer connection to the geometry of positive definite
matrices [21].
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V. EVALUATION
A. Simulation

Consider a scenario where careful sound field measurements
are first made in a room, followed by a change to the
acoustic environment, which requires the spatial covariance to
be updated with new data. A few sound field measurements
of the form (2) are collected in the new acoustic environment,
which provide insufficient spatial sampling on their own. By
combining the covariance data from the old environment and
the sound field data from the new environment, the new
covariance estimate should be improved. A simulation based
experiment is performed, representing this scenario.

The first considered spatial covariance estimation method
is referred to as sound field data, and computes the sample
covariance from M sound field measurements of type (2)
from the new environment. The second method, referred to as
kernel ridge regression (KRR), uses the same M sound field
measurements from the new environment, but estimates the
sound field as (9), followed by the spatial covariance estimate
(10). Covariance-informed kernel ridge regression (CIKRR) is
the proposed method. As a reference, the covariance data from
the old environment can be used directly without any data from
the new environment, which is referred to as covariance data.

Two cuboid regions of size 50 x 50 x 15 cm, referred to as
the bright zone and dark zone, are placed in the interior of a
circle of S = 8 sources. M = 6 microphones are placed on the
boundary of each zone, the positions of which are shown in
Fig 1. RIRs are generated using the image-source method, with
a reverberation time of 0.36s at a sampling rate of 1600 Hz
[22], [23]. The data h,, is transformed from time-domain RIRs
using a 800-point discrete Fourier transform before adding
white Gaussian noise at a signal-to-noise ratio (SNR) of 40 dB.

The results are evaluated on an equally spaced grid E of 432
evaluation points with a spacing of 4 cm within each region.
The sound field estimation error is measured by

Peeplli(re) —u(re)l3

Yeenllulre)ll3

and the covariance estimation error is measured by
NMSE.,, = ||[R — R|%/||R|/%. The true spatial covariance
is computed as the sample covariance of the noise-free sound
field at the evaluation points.

The regularization parameter is set A = 10~°. The points
rm form=M+1,..., M+ V are chosen randomly from a
uniform distribution within 2. The optimization problem (11)

NMSEs = (15)
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Fig. 2. Normalized mean square error of the sound field (top), and the spatial
covariance (bottom) estimates for different values of the extra parameters V.

is solved using an ADAM optimizer with 10° steps and a step
size of 2-1073 [24]. The matrix K is computed using Monte
Carlo integration with 1000 samples.

B. Sound zone control method

The considered sound zone control method is given in
[10], a method which only require spatial covariances, and is
a generalization of pressure matching and acoustic contrast
control. The source signals y € C° are intended to be
reproduced in the bright zone, but are generated without taking
into account the leakage into the dark zone. The source signals
are therefore modified using the filter F' € C°*% as g = Fy
to be similar to y in the bright zone, while being close to 0 in
the dark zone. The filter F' that minimizes the pressure error
is given by

F =(Ry+ Ry+6I)" 'Ry, (16)

where  denotes complex conjugate, and Ry, Rg € S, (9)
the spatial covariances for the bright and dark zones.

The regularization parameter d is chosen as § = 1072|| Ry]|2
for sound field data and KRR and 6 = 1073||Ryl|> for
covariance data and CIKRR. The constants are of the form
10~¢ for integer o chosen to minimize the pressure error. The
unmodified source signals y are generated as white Gaussian
noise in the time-domain, independent for each source.

C. Experiment 1: Number of extra parameters V

The approximation of the integral in (13) raises the question
of how to set the parameter V. It would be reasonable to
believe that larger values leads to better performance, as the
integral is more accurately approximated. For this experiment
the proposed method using Jrop as covariance fitting function
is compared for different values of V, when the covariance
data is the true covariance. The parameter vy is set to v = 1.

In Fig. 2 the NMSEg and NMSE_,, are shown as a function
of V for the bright zone. The extra degrees of freedom
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Fig. 3. Sound zone control performance (left) and estimation performance
(right) as a function of the difference in the speed of sound for the environment
where the covariance data is measured, compared to the speed of sound where
the sound field data is measured and the methods are evaluated.

given by selecting a larger V' allows the estimate to fit both
sound field and covariance data accurately. The estimates
quickly converge, suggesting that a small V' provides most
of the benefit, in turn leading to only a small increase in
computational cost.

D. Experiment 2: Sound zone control

Changes to the speed of sound happen over time due to
temperature or humidity changes, and degrades sound field
reproduction performance. Given that the covariance data is
degraded by the change to the speed of sound, the proposed
method utilizes sound field measurements made after the
change to maintain sound zone control performance. The
approach can be contrasted with previous work where the
speed of sound is explicitly compensated for [25].

The covariance data R, is computed from 64 noise-free
measurements taken at random points in the region, in a
simulated room where the speed of sound is lower compared to
the final value of 343 m/s. The sound field data is measured at
the same speed of sound as the evaluation values, 343 m/s.
Only the case where the speed of sound is increased is
considered, as the results can be expected to be similar when
the speed is decreased [26, Section 4.1]. The parameters V'
and +y are set to V = 10 and v = 103, The acoustic contrast
and pressure error are computed from 5s of signals.

The estimation and sound zone control performance are
shown in Fig. 3, as a function of the speed of sound at which
the covariance data was measured. The NMSE; is consistently
higher for CIKRR compared to KRR. However, the spatial
covariance estimates are consistently improved compared to
the covariance data, which means that CIKRR provides the
best covariance estimate when the covariance data is better
or of similar quality to the sound field data. CIKRR with the
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Fig. 4. Pressure error (top) and normalized mean square error for the spatial
covariance estimate (bottom) when the covariance data is collected at =2 m/s
compared to the evaluation environment.

Wasserstein metric achieves the lowest pressure error for all
but the cases where the covariance data is of very high quality,
in which case the results are similar to covariance data. As
the quality of the covariance data degrades, CIKRR with both
Wasserstein and Frobenius metric degrades slower compared
to the data itself. Finally, the pressure error of CIKRR with
the Wasserstein metric is equal or lower compared to the
covariance data, and significantly improved over sound field
data and KRR, as can be seen in Fig 4.

VI. CONCLUSION

A method for sound field estimation based on kernel
ridge regression has been proposed, intended to be used for
estimation of the spatial covariance required in sound field
reproduction. In contrast to existing approaches, the proposed
method allows for the combination of both sound field data and
covariance data. The estimation and sound field reproduction
performance has been evaluated using simulations, where it
is shown that the proposed method provides improved results,
especially when the covariance data is of similar or better
quality compared to the sound field data.
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