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Abstract—Deep Internal Learning (DIL) is a paradigm with
high potential in deep learning, as it reduces reliance on ex-
ternal training data and uses a lightweight model compared to
traditional deep learning methods. Since its introduction, DIL
has been explored in the field of image processing, including
applications such as image super-resolution, denoising, and de-
blurring. However, its potential for other signal-processing tasks
such as speech enhancement remains relatively underexplored.
In this study, we investigate the feasibility of utilizing DIL for
single-channel dereverberation. Specifically, we develop a small
speech-specific Convolutional Neural Network (CNN) that is
trained exclusively on example pairs derived from the observed
reverberant speech itself. We evaluate our approach in the
context of a dereverberation task in oracle experiments and
more practical scenarios, considering rooms with a range of
reverberation times. Experimental results demonstrate that the
DIL approach can achieve higher speech enhancement and
dereverberation scores compared to the traditional Weighted
Prediction Error (WPE) algorithm. This paper showcases the
potential of DIL for speech enhancement and formulates several
open issues for future research on this topic.

Index Terms—Deep Internal Learning, Speech Enhancement,
Speech Dereverberation

I. INTRODUCTION

Reverberation is a common type of distortion found in
real-world speech signals. It can have a detrimental effect
on perceived speech quality, human intelligibility, and Auto-
matic Speech Recognition (ASR) performance. Communica-
tion technologies such as hearing aids [1], [2] and teleconfer-
encing systems [3] require robust dereverberation techniques
to improve speech intelligibility and thereby facilitate more
effective communication. In ASR-integrated applications, such
as voice-controlled assistants [4], Speaker Identification (SID)
[5], and other speech processing tasks [6], [7], reverberation
caused by complex acoustic environments must be mitigated
to achieve higher recognition accuracy.

Room reverberation is typically modeled as a convolution
of the source signal with an impulse response representing
the acoustic propagation channel [8]. In recent years, various
approaches to dereverberation have been proposed. Traditional
approaches such as Weighted Prediction Error (WPE) algo-
rithm [9]–[11] utilize linear prediction to reduce reverberation
components in speech signals. Recent dereverberation meth-
ods leverage Machine Learning (ML), particularly diffusion
models [6], [12]. The performance of these ML approaches is

Demo results are available at https://yuxiz0826.github.io/demos/

particularly effective when they generalize well to unseen test
data. This generalization ability is usually achieved through
extensive training, both in terms of the quantity and diversity
of the training data. However, curating sufficiently diverse
and large-scale training datasets remains a challenge, and
training such models incurs high computational costs, leading
to practical difficulties.

In this paper, we explore a contrasting ML approach based
on Deep Internal Learning (DIL) that requires no (external)
training data. Instead, DIL leverages the structural patterns
within a single input to produce an enhanced signal. While
such zero-shot methods like DIL are generally expected to
underperform compared to generalized models, our objective
is to investigate how close their performance could be to fully-
fledged ML approaches, with the compensating advantage of
reducing training and inference complexity. As a first step
toward applying DIL in speech enhancement, we focus on
single-channel speech dereverberation. The key contributions
of this work are summarized as follows:

1. Novel Application: We introduce DIL to the domain
of speech enhancement and demonstrate its suitability for
scenarios where developing a generalized model with external
training data may be expensive, impractical or infeasible.

2. Efficiency and Practicality: We highlight the potential of
DIL to remove reliance on external training data and provide
a lightweight, efficient model for speech dereverberation.

3. Empirical Validation: We develop a novel formulation of
DIL for speech enhancement and provide simulation results to
indicate the level of performance obtained in oracle and more
realistic scenarios for the chosen task of dereverberation.

The rest of the paper is structured as follows: First, we very
briefly summarize the existing research for speech dereverber-
ation. Next, we introduce the DIL concept, originally applied
in image processing, before presenting our novel development
of DIL for speech dereverberation. We then evaluate the
feasibility of DIL in an oracle experiment. Finally, we extend
our investigation to more practical scenarios.

II. EARLY APPROACHES FOR SPEECH DEREVERBERATION

The noiseless reverberant signal, y[n], captured by a single
microphone is commonly modeled as

y[n] =

T∑
τ=0

h[τ ]x[n− τ ] = h[n] ∗ x[n], (1)

106ISBN: 978-9-46-459362-4 EUSIPCO 2025



where n denotes the discrete time index, h[n] is the Room
Impulse Response (RIR) modeled as a finite impulse response
(FIR) filter of order T , x[n] is the anechoic speech signal of
interest, and ∗ denotes the convolution operator. Specifically,
h[n] can be decomposed into early reflections he[n], which
may be beneficial, and late reflections hℓ[n], which are detri-
mental to speech intelligibility and ASR performance, as

y[n] = he[n] ∗ x[n] + hℓ[n] ∗ x[n]. (2)

The goal of dereverberation is to reduce the effect of late
reflections represented by hℓ[n]. By applying the Short-time
Fourier Transform (STFT) on (1), we obtain

Y (l, k) = H(l, k)X(l, k), (3)

where Y (l, k), X(l, k) and H(l, k) represent the STFT of
y[n], x[n], and h[n], respectively, with l denoting the time
frame index and k representing the frequency bin index.
This formulation forms the basis for many dereverberation
approaches, including both model-based and data-driven tech-
niques.

A widely used model-based approach for speech dereverber-
ation is the WPE algorithm [9]–[11]. It employs linear predic-
tion and optimization to estimate and subtract the reverberant
component, thereby estimating he[n] ∗ x[n]. Suitable for both
single- and multi-channel settings, WPE serves as the baseline
model in this work. Although it offers advantages including
relatively low computational complexity and robustness across
various reverberation conditions, WPE’s performance may be
constrained in single-channel scenarios and when the observed
speech duration is short, as both conditions can lead to
accumulated estimation errors [13].

Deep Neural Network (DNN)-based methods, both super-
vised and unsupervised, discriminative and generative, have
been extensively explored [12], [14]–[19]. These approaches
enhance adaptability by modeling speech characteristics and
acoustic variations during training. However, the training
process typically relies heavily on large datasets, which in-
troduces substantial computational costs and challenges in
generalizing to unseen conditions. Recent work has shown that
self-supervised speech enhancement techniques can reduce
dependence on reverberant-clean pairs by utilizing unpaired or
solely reverberant data [20], [21]. However, these approaches
still demand considerable training data, increasing the training
cost, particularly when data acquisition is challenging. Conse-
quently, this has spurred our interest in alternative methods that
minimize data requirements while maintaining adaptability
across diverse conditions.

III. DIL IN IMAGE PROCESSING

DIL is a deep learning paradigm initially developed for
image processing tasks such as image super-resolution, de-
noising, and deblurring [22]–[25]. Unlike traditional DNNs
that rely on large external datasets for training, DIL enables
networks to be trained exclusively on examples extracted
from a single image input I at test time by leveraging its

internal self-similarity [23], [26]. This inherent recurrence or
similarity suggests that even when an image is degraded, key
features such as edges, textures, or patterns remain sufficiently
preserved to allow reconstruction. This fundamental insight al-
lows DIL to infer and restore the missing details of the original
image by analyzing the repetitive information across different
scales. More specifically, for the image super-resolution, an
image-specific model is trained to learn the mapping from a
downscaled version I ↓ q (where q is the super-resolution
scale factor) to its corresponding observed test image I .
Once trained, the model can be applied to reconstruct the
desired high-resolution version I ↑ q of the input image. This
self-contained (internal) learning eliminates the dependence
on extensive external training datasets, positioning DIL as a
powerful alternative to traditional deep learning methods.

Despite its success in image processing, there has been
limited exploration of DIL in other domains, such as speech
processing. Speech spectrograms, like images, are two-
dimensional representations that exhibit structural recurrence,
including harmonics, formants, and rhythmic patterns. This
parallel between images and speech spectrograms suggests
that DIL could potentially be extended to various speech
processing tasks, such as speech denoising, dereverberation,
and bandwidth extension. In this work, we specifically explore
the application of DIL to speech dereverberation due to its
conceptual similarity to image deblurring.

IV. DIL FOR SPEECH DEREVERBERATION

A. Proposed Framework

Unlike conventional DNN speech dereverberation ap-
proaches that require training on a large number of
reverberant-anechoic speech pairs, DIL exploits example pairs
derived solely from the reverberant spectrogram input itself,
eliminating the need for external clean references.

We consider a clean speech log-magnitude spectrogram
X(l, k) and the corresponding observed reverberant spectro-
gram Y (l, k), given by

Y (l, k) = H1(l, k)X(l, k), (4)

where H1(l, k) represents the room reverberation in the
time-frequency domain. The first step in DIL is to create
a degraded version Y ′(l, k), which is a more reverberant
counterpart of Y (l, k), such that

Y ′(l, k) = H2(l, k)Y (l, k), (5)

where H2(l, k) introduces additional reverberation to
Y (l, k). In general, H2(l, k) is unknown and represents a
degradation model. We will consider both oracle H2(l, k) =
H1(l, k), and approximations H2(l, k) ̸= H1(l, k), which
distinguish H2(l, k) from the original RIR H1(l, k).

Fig. 1 presents our DIL framework. In practice, the only
available information is Y (l, k). By training on paired ex-
amples V (k) and U(k) extracted from Y ′(l, k) and Y (l, k)
respectively, a speech-specific model M(Y ′, Y ) learns the
mapping between Y ′(l, k) and Y (l, k). During inference, this
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Fig. 1. DIL Framework for Speech Dereverberation

model is applied to Y (l, k) to give an estimate, X̂(l, k),
of X(l, k). This DIL framework uses M(Y ′, Y ) as a proxy
for the ideal model M(Y,X), which would directly estimate
X(l, k) from Y (l, k). The method’s success depends on its
sensitivity to the accuracy of approximating M(Y,X) with
M(Y ′, Y ). This point will be addressed in Section V.

B. Data Pre-processing & Model Architecture

The STFT is computed using Hann-windowed frames with
a length N = 1024, hop-size of 128 samples and sampling
frequency 16 kHz. This DIL model operates only on the spec-
trogram magnitude, assuming the phase remains unchanged
during reconstruction. However, this assumption may intro-
duce artifacts, as discussed later.

Since the diversity of reverberant-clean relationships within
a single reverberant speech example is significantly lower than
that in an entire training set, the DIL approach enables a
lightweight model architecture to be employed, compared to
conventional DNNs, which typically require deeper structures
to learn this mapping. We therefore adopt a simple fully
convolutional network with 10 convolutional layers, each using
3×3 kernels (stride 1), ReLU activation, and a 0.2 dropout
rate, except the last layer where both are omitted. Fig. 2
illustrates the model architecture. The network processes a
single-channel spectrogram (1×21×513) through 16 feature
maps per hidden layer while preserving spatial dimensions.
A fully connected layer maps features back to a single-
channel output (1x513). A global residual connection adds the

input spectrogram to the output, preserving essential details
while leveraging learned features. For optimization, we use
the MSEloss with the Adam optimizer, initializing the learning
rate at 10−5. A MultistepLR scheduler adjusts the learning rate
at epochs 100 and 150 (decay factor 0.1). Early stopping is
applied with a patience of 5 epochs, terminating training when
no significant improvement in loss (∆ < 10−5) is observed.

The temporal context and windowing strategy construct
the training input V (k) by extracting 21 consecutive frames
centered at frame l from Y ′(l, k). The corresponding training
target U(k) contains the full range frequency of Y (l, k) at
frame l. These example pairs are highlighted in Fig. 2 with
a dashed red outline. During inference, the same window-
ing strategy is applied to Y (l, k) before feeding it into the
trained model. The model outputs are assembled to reconstruct
the complete spectrogram X̂(l, k). Since no information is
available for the first and last 10 frames of X̂(l, k), they
are temporarily filled with values from Y (l, k) during recon-
struction. However, these boundary frames are excluded from
the evaluation to prevent edge effects. Notably, while Y ′(l, k)
serves as a pseudo-label to guide the training, all samples
originate from the test input itself without incorporating any
external data. This exclusive reliance on the information within
the signal defines DIL as a zero-shot learning paradigm,
enabling adaptation without pre-trained models.

V. EXPERIMENTS & RESULTS

A. Experiment Set-up

We randomly selected 100 clean speech signals from the
IEEE Sentences dataset, including both male and female
voices. To generate the RIRs, we used the Image-Source
Method (ISM) [27] with three different reverberation times
(T60): [204, 513, 972] ms, as summarized in Table I.

TABLE I
CONFIGURATIONS OF EXPERIMENTAL ROOM PARAMETERS

T60=204 ms T60=513 ms T60=972 ms

Room Size [5,6,4] [8, 9, 5] [8, 9, 5]
Source Position [3,4,2] [7,8,3] [7,8,3]
Microphone Position [3,3,2] [7,5,3] [7,5,3]
Reflection Factor 0.6 0.8 0.9

Performance evaluation for speech dereverberation lacks a
single standardized metrics. Thus, a combination of metrics
were used. We used Perceptual Evaluation of Speech Quality
(PESQ) [28] for quality assessment, Short-Time Objective
Intelligibility (STOI) [29] for intelligibility, and Normalized
Signal-to-Reverberation Ratio (NSRR) [30] to quantify the
power ratio between the direct path and reverberant compo-
nents of the received signal.

B. Oracle Case: H2(l, k) = H1(l, k)

To evaluate the feasibility of the DIL approach for speech
dereverberation, we first conducted an oracle experiment
where the ground truth H1(l, k) was assumed to be known, and
the oracle choice H2(l, k) = H1(l, k) was used. The results
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Fig. 2. Model Architecture with the windowing strategy for data augmentation. The red window V (k) represents a single training input example, while the
red window U(k) denotes its corresponding training target. By shifting both windows one time frame to the right, the next training example pair is obtained.
a(k) denotes the frequency weight, which was 1 in our experiments.

TABLE II
PERFORMANCE COMPARISON. MEAN (STD. DEV.) DILO REPRESENTS THE ORACLE CASE.

T60 = 204 ms T60 = 513 ms T60 = 972 ms

PESQ STOI NSRR (dB) PESQ STOI NSRR (dB) PESQ STOI NSRR (dB)

Observed 1.99 (0.19) 0.72 (0.03) -7.22 (1.08) 1.82 (0.16) 0.69 (0.03) -8.83 (1.96) 1.75 (0.15) 0.67 (0.03) -9.42 (2.07)
WPE 2.19 (0.23) 0.77 (0.02) -6.39 (1.05) 1.96 (0.20) 0.75 (0.03) -8.09 (1.95) 1.87 (0.18) 0.72 (0.03) -8.64 (2.02)
DILo 2.70 (0.17) 0.89 (0.02) 2.11 (1.93) 2.46 (0.14) 0.86 (0.02) 2.30 (1.75) 2.38 (0.15) 0.85 (0.02) 2.16 (1.68)
DIL 2.49 (0.19) 0.85 (0.02) -1.1 (1.66) 2.31 (0.14) 0.83 (0.02) 0.77 (1.54) 2.28 (0.14) 0.82 (0.02) 0.99 (1.68)

of this experiment, (DILo), were compared with the baseline
WPE, which was configured according to the recommenda-
tions in [10], [11]. Table II shows the mean performance and
standard deviations over 100 test utterances. Observed refers
to the unprocessed reverberant speech input. Audio demon-
strations are available at https://yuxiz0826.github.io/demos/.

The oracle experiment results demonstrate the upper bound
performance of this DIL approach across various reverberation
conditions. While DIL experiences a slight performance degra-
dation as T60 increases, it consistently outperforms WPE,
achieving superior scores across all metrics. Notably, DIL
maintains positive NSRR values under all conditions, indicat-
ing significant dereverberation improvements, whereas WPE’s
NSRR scores remain negative.

Although oracle results provide an upper bound for the
DIL approach, PESQ and STOI do not reach their theoreti-
cal maximums. One potential reason is that the DIL model
operates solely on the spectrogram magnitude without phase
information. As a result, phase distortions in the reconstructed
waveform may negatively impact perceptual quality and intel-
ligibility, leading to a potential reduction in scores. This limi-
tation also manifests as certain artifacts in the enhanced audio,
raising an open question related to their nature. Incorporating
phase estimation is therefore a key direction for future work.

C. Realistic Case: H2(l, k) ̸= H1(l, k)

This experiment evaluates whether the DIL approach
remains effective under more realistic assumptions when
H1(l, k) is typically unknown. Specifically, only the T60 of
H1(l, k) is assumed to be known, which can be estimated
using existing techniques [31]. Here, H2(l, k) is generated
by multiplying uniformly distributed random noise samples
with an exponentially decaying envelope corresponding to the
assumed T60 of H1(l, k). The experimental results are again
compared with WPE, as presented in Table II (DIL).

We observe that while the performance of DIL slightly
decreases compared to the oracle case, it remains robust
in reducing reverberation and still consistently outperforms
WPE across all T60 conditions. This demonstrates DIL’s
effectiveness even without full oracle knowledge of H1(l, k).

However, this experiment also highlights several key limita-
tions. First, an accurate estimation of T60 was assumed, which
may not hold in practical applications, as T60 estimation
algorithms often introduce errors and variability. Therefore,
assessing the model’s sensitivity to potential inaccuracies is
crucial in T60 estimation. Second, the randomized rever-
beration filter used for H2(l, k) does not fully capture real
RIR charateristics, such as early reflections and late rever-
beration. This highlights the model’s sensitivity to deviations
between H1(l, k) and its approximation H2(l, k), suggesting
the future work should evaluate DIL using measured RIRs
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from actual acoustic environments. Additional improvements
include multi-channel processing, which could leverage spatial
information to enhance dereverberation further.

VI. DISCUSSION & CONCLUSION

This paper proposes the DIL paradigm for speech enhance-
ment and presents its formulation and evaluation for speech
dereverberation, eliminating reliance on external training data.
We demonstrate its effectiveness in single-channel speech
dereverberation in both oracle and more realistic scenarios.
Our experimental results show that DIL outperforms the WPE
baseline by 0.35 in PESQ, 0.08 in STOI and 8.86 in NSRR
(dB) for T60 around 0.5 s, delivering robust performance
across varying T60 conditions. Compared to the state-of-the-
art ML algorithm [12], which reports an improvement over
WPE by 0.7 in PESQ and 0.16 in STOI, DIL maintains strong
performance while avoiding the need for a pre-trained clean
speech model. Incorporating phase information during training
could help mitigate artifacts, while using measured RIRs
may improve robustness in real-world applications. Future
work will examine the model’s sensitivity to T60 estimation
errors and explore multi-channel setups to further enhance the
reverberation adaptability in diverse acoustic environments.
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