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Abstract—Speech dereverberation addresses the degradation
of speech quality caused by late reverberation. Although the
weighted prediction error (WPE) method has demonstrated
superior performance in mitigating reverberation, its centralized
architecture results in substantial computational and communi-
cation overhead, particularly in distributed settings where each
spatially separated node is equipped with a microphone array.
This paper first formulates a novel distributed WPE optimization
problem that fits into this network scenario. To further enhance
the optimization process, we propose to integrate data-driven
speech priors into the framework via a plug-and-play strategy.
Hence, the proposed framework not only reduces the computation
and communication complexity at individual nodes through
effective inter-node collaboration but also improves performance
under challenging acoustic conditions. Experimental evaluations
confirm the framework’s effectiveness in both noise-free and
noisy distributed scenarios.

Index Terms—Distributed speech dereverberation, the
weighted prediction error method, deep speech priors,
regularization by denoising

I. INTRODUCTION

Speech signals recorded in enclosed environments are in-
variably affected by reverberation, which arises from the
multiple reflections of sound waves off rigid surfaces [1],
[2]. Consequently, despite the inherent difficulties of speech
dereverberation, this research area has attracted considerable
attention over recent decades [3], [4]. Among the estab-
lished dereverberation techniques, the weighted prediction
error (WPE) method is particularly notable, which employs
a centralized strategy by aggregating observations from all
microphones on a reference channel to estimate and subtract
the late reverberation component from the speech signal [5].

Although the centralized strategy has demonstrated consid-
erable potential, aggregating and processing signals on a ref-
erence channel presents substantial computational challenges.
This issue is particularly pronounced in distributed scenarios.
For example, in modern smart home environments or immer-
sive online conference applications, microphones are often
widely dispersed throughout a room, with each device linked
to a computational unit that typically has limited processing
capacity. To mitigate this issue, recent research has focused on
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developing the distributed WPE (DWPE) technique [6], allow-
ing each node to operate with its own independent processing
unit. In this approach, optimal estimation is achieved through
efficient inter-node cooperation by exchanging compressed
data rather than raw data. Consequently, the computational
burden traditionally centralized at a fusion center is distributed
among individual nodes. Despite the advantages of DWPE,
its performance under complex acoustic conditions could be
further enhanced.

Recently, the plug-and-play (PnP) strategy has garnered
considerable attention in the signal processing community [7]–
[9], which involves incorporating a deep denoising algorithm
as a module within iterative optimization processes, thereby
implicitly capturing deep priors learned from data. As such,
the PnP strategy enables the seamless integration of physics-
based methods with data-driven techniques by leveraging their
complementary strengths. Several studies have validated the
efficacy of this hybrid strategy in addressing the inverse
problems in some speech processing applications [10]–[15].

Motivated by these advances, we propose incorporating
data-driven priors into the conventional DWPE framework to
address the distributed speech dereverberation task. Specifi-
cally, we employ the regularization-by-denoising (RED) strat-
egy [16], a powerful variant of the PnP approach, to integrate
a deep neural network (DNN)-based speech denoiser into
the reformulated distributed dereverberation problem, thereby
facilitating the parameter estimation process. This integration
effectively captures the intricate speech priors inherent in the
data, ensuring that the output at each node aligns with the
structural characteristics typically observed in speech signals.
Consequently, our framework reduces the computational and
communication complexity at individual nodes through inter-
node collaboration while enhancing performance in challeng-
ing acoustic environments.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System and Signal Model

Consider a speech sensing scenario in which an acoustic
sensor network is deployed to capture speech signals in a
distributed manner. As illustrated in Fig. 1(a), the network
comprises M interconnected nodes, each equipped with mul-
tiple microphones to facilitate collaborative environmental
sensing. Specifically, node i is outfitted with Qi microphones,
and the total number of microphones in the network is given
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Fig. 1. Overview of the proposed method. (a) Network and signal model. (b) The inter-node collaboration of distributed strategy. (c) The optimization process
with PnP to employ deep priors within a node. (d) The architecture of the incorporated DNN.

by Q =
∑M

i=1 Qi. Note that under our scenario settings, each
node has full access to signals captured by its own micro-
phones; however, inter-node communication remains subject
to bandwidth constraints.

Let s(t) denote the source speech signal. The q-th mi-
crophone at node i receives the signal xiq(t), which can be
modeled as:

xiq(t) = hiq(t) ∗ s(t) + yiq(t), (1)

where hiq(t) represents the acoustic impulse response from
the source to the q-th microphone at node i, the symbol ∗
represents the linear convolution operation, and yiq(t) is the
zero-mean additive noise at the q-th microphone, assumed to
be independent of the source speech signal s(t).

The signal model described in equation (1) can be approx-
imated in the short-time Fourier transform (STFT) domain as
follows:

Xiq(n, k) =

J−1∑
j=0

Hiq(j, k)S(n− j, k) + Yiq(n, k), (2)

where n and k represent the time-frame and frequency-bin
indices, respectively, and J denotes the convolutive order of
Hiq(n, k) across time frames. In this STFT domain, Xiq(n, k),
S(n, k), and Yiq(n, k) represent the STFT counterparts of
xiq(t), s(t), and yiq(t), respectively.

B. Centralized WPE with Data-Driven Regularization
Now, consider the case where the signals from all micro-

phones are aggregated in a centralized processing unit. In
this configuration, multichannel linear prediction is widely
employed for dereverberation, as it estimates the desired
speech signal by minimizing the prediction error. Specifically,
the approach utilizes signals that commence at a delay τ as
regressors in the prediction model.

Define the regressor vector xi(n − τ, k) ∈ CLQi at node i
and time instant n− τ as follows:

xi(n− τ, k) = col
{
{Xiq(n− τ − l, k)}L−1

l=0

}Qi

q=1
, (3)

where col{· · · } represents the operation of stacking its argu-
ments into a column vector, and L denotes the filter order.
The desired speech signal at time n and frequency bin k can
be estimated as:

Ŝ(n, k) = Xref(n, k)−wH(k)x(n− τ, k), (4)

where Xref(n, k) refers to the reference signal, which can be
chosen arbitrarily from any microphone, and x(n−τ, k) is the
aggregated regressor from all nodes in the network, given by:

x(n− τ, k) = col {x1(n− τ, k), · · · ,xM (n− τ, k)} . (5)

The filter weight vector wH(k) ∈ CLQ is constructed as:

wH(k) = col {w1, · · · ,wM} , (6)

where wi ∈ CLQi is the weight vector associated with the
regressor xi(n− τ, k) at node i.

The WPE method aims to determine the filter weight vector
by minimizing the following cost function:

JWPE

(
{w(k)}Kk=1

)
=

K∑
k=1

N∑
n=1

[
|Ŝ(n, k)|2

σ(n, k)
+ log (πσ(n, k))

]
,

(7)
where Ŝ(n, k) is defined as in equation (4), σ(n, k) represents
the estimated speech variance at frame n and frequency bin
k, and N is the number of frames used as regressors for
prediction.

Since Ŝ(n, k) is regarded as the desired speech, it is
advantageous to incorporate a regularizer to enforce speech
priors on Ŝ(n, k):

JWPE Reg

(
{w(k)}Kk=1

)
= JWPE

(
{w(k)}Kk=1

)
+β0JReg

(
R̂
)
,

(8)
where β0 is a parameter that balances the trade-off, JReg

represents a regularization term, and R̂ ∈ RN×K is the speech
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time-frequency matrix with its (n, k)-th element given by
R̂(n, k) 1,

R̂(n, k) = Xref(n, k)−wH(k)x(n− τ, k)− V (n, k) (9)

where V (n, k) represents the additive noise at time frame n
and frequency bin k. Without designing an explicit regularizer,
we learn priors from speech data and incorporate them into
the optimization process, using the regularization by denoising
(RED) strategy as follows:

JReg

(
R̂
)
=

1

2
⟨R̂, R̂− Ω(R̂)⟩, (10)

where Ω(·) represents a deep-neural network based speech
denoiser. This formulation serves as an efficient regularizer,
exhibiting beneficial derivative characteristics under reason-
able assumptions.

C. Distributed dereverberation

In a distributed configuration, each node i operates in
parallel to fulfill the same role. Specifically, each node inde-
pendently estimates wi and R̂(n, k) based on its local micro-
phone signals xiq(t) (for q = 1, · · · , Qi), and exchanges only
reduced information with other nodes, without aggregating
their raw data.

III. DISTRIBUTED WPE WITH DATA-DRIVEN PRIORS

A. Data compression and inter-node information sharing

An effective approach for estimating the required node-
specific parameters and signals is to incorporate learnable
compressors at each node. In this framework (as illustrated in
Fig. 1(b)), each node leverages its local raw data in conjunction
with compressed information received from connected nodes
to perform prediction. Consequently, the prediction process at
node i can be expressed as follows:

Ŝi(n, k) = Xref(n, k)−
[
wH

i (k) | w̃H
i (k)

] [ xi(n− τ, k)
di(n− τ, k)

]
(11)

where di(n − τ, k) ∈ CM−1 is a vector of compressed
data from other nodes. and w̃i ∈ CM−1 is the weights
associated with the exchanged compressed signal di(n− τ, k)
respectively.

Now, let us specify the construction of the compressed data
via a linear projection

cj(n− τ, k) = gH
j (k)xj(n− τ, k). (12)

Each nodes then broadcasts this compressed information to
its neighbors. For each node i, the compressed data vector
di(n− τ, k) is constructed by

di(n− τ, k) = col{cj(n− τ, k)}j ̸=i. (13)

It is worth noting that a particularly effective strategy for
determining gj(k) is to set

gj(k) = wi(k). (14)

1Similar notation will be applied to other bold capital letters, such as R,
V, and P.

Although the optimal wi(k) is initially unknown, gj(k) can
be updated using the current estimate of wi(k) during the
iterative process, as will be detailed in subsequent sections.
Remark: Under the efficient inter-node cooperation scheme,
each node i broadcasts only N frames signals to other nodes
rather than Qi×N frames per frequency bin, thereby substan-
tially reducing the overall communication complexity across
the network.

B. Distributed problem formulation on each node

In light of the previously described data compression and
sharing mechanism, we relax the centralized problem in (8)
to derive a local cost function for distributed dereverberation
incorporating data-driven priors:

Ji

(
wi(k), w̃i(k),σi(k), R̂i, V̂i

)
=

K∑
k=1

N∑
n=1

log πσi(n, k)

+
1

σi(n, k)

∣∣∣∣Xref,i(n, k)−
[
wH

i (k)|w̃H
i (k)

] [ xi(n− τ, k)
di(n− τ, k)

]∣∣∣∣2
+

β0

2
⟨R̂i, R̂i − Ω(R̂i)⟩

(15)
with

R̂i(n, k) = Xref,i(n, k)−
[
wH

i (k)|w̃H
i (k)

] [ xi(n− τ, k)
di(n− τ, k)

]
− Vi(n, k).

(16)
Here, V (n, k) denotes the additive noise in the modeling and
processing. In contrast to the centralized formulation, this
distributed solution is characterized by three key features: i)
the incorporation of compressed information from neighboring
nodes; ii) the use of a local reference signal, and iii) the
enhancement of speech properties in the local desired speech
estimate, R̂i.

C. Problem solving

For brevity, we define the following composite vectors:

ui(k) = col{wi(k), w̃i(k)}, (17)
yi(n− τ, k) = col{xi(n− τ, k),di(n− τ, k)}. (18)

With a given σi(k), we consider the following (scaled) aug-
mented Lagrange function in order to minimize (15) with the
equality constraint (16):

L
(
ui(k)

K
k=1, R̂i,Vi,Pi

)
= Ji

(
wi(k), w̃i(k),σi(k), R̂i, V̂i

)
+

ρ

2

K∑
k=1

N∑
n=1

(∣∣[Xref,i(n, k)− ui
Hyi(n− τ, k)]

−Vi(n, k)−R̂i(n, k)+Pi(n, k)
∣∣2−|Pi(n, k)|2

)
,

(19)
In this context, Pi(n, k) represents the scaled dual variable in
i-th node, and ρ denotes the penalty parameter. The ADMM
method decomposes the optimization of the problem in equa-
tion (19) into solving separate subproblems for each iteration
index ℓ as follows.
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TABLE I
PERFORMANCE UNDER VARIOUS DISTRIBUTED CONDITIONS, WHERE L REPRESENTS THE FILTER ORDER REQUIRED BY THE DIFFERENT COMPARISON

METHODS. THE BEST RESULTS ARE IN BOLD.

Methods
Node 1 Node 2 Node 3

L
Noise-free Noisy (0 dB)

L
Noise-free Noisy (0 dB)

L
Noise-free Noisy (0 dB)

PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑
Unprocessed - 1.671 0.504 1.246 0.488 - 1.615 0.600 1.153 0.499 - 1.827 0.572 1.235 0.498

WPE 120 2.776 0.832 1.265 0.507 80 2.275 0.778 1.168 0.506 160 2.760 0.854 1.251 0.522
WPE-a 400 2.455 0.843 1.183 0.499 400 2.467 0.774 1.211 0.515 400 2.459 0.833 1.290 0.529

PnPWPE 120 2.543 0.770 1.753 0.566 80 3.112 0.898 1.583 0.572 160 2.781 0.842 1.886 0.562
DWPE 123 2.217 0.626 1.270 0.504 83 2.911 0.734 1.286 0.584 163 2.950 0.833 1.351 0.499

Proposed 123 3.276 0.886 2.123 0.708 83 3.167 0.805 1.465 0.601 163 3.248 0.917 2.647 0.708

Methods
Node 1 Node 2 Node 3

L
Noisy (10 dB) Noisy (20 dB)

L
Noisy (10 dB) Noisy (20 dB)

L
Noisy (10 dB) Noisy (20 dB)

PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑ PESQ ↑ STOI ↑
Unprocessed - 1.562 0.535 1.687 0.549 - 1.516 0.567 1.510 0.596 - 1.585 0.552 1.737 0.567

WPE 120 1.613 0.584 1.898 0.651 80 1.571 0.592 1.688 0.649 160 1.627 0.607 1.981 0.685
WPE-a 400 1.611 0.584 1.864 0.676 400 1.561 0.584 1.782 0.623 400 1.613 0.588 1.962 0.673

PnPWPE 120 2.145 0.661 2.431 0.735 80 1.808 0.661 2.028 0.725 160 2.169 0.677 2.447 0.757
DWPE 123 2.181 0.580 2.165 0.695 83 1.899 0.632 2.021 0.678 163 1.842 0.640 1.841 0.672

Proposed 123 2.372 0.775 2.435 0.778 83 2.288 0.746 2.463 0.706 163 2.875 0.728 2.395 0.790

1) Step 1: Optimization with respect to ui(k). The optimiza-
tion w.r.t. ui(k) is a separable least square problem with
it solution given by

u
(ℓ+1)
i (k) = [Ryi

(ℓ+1)(k)]−1p(ℓ+1)
yi

(k), (20)

where R
(ℓ+1)
yi (k) =

∑N
n=1

yi(n−τ,k)yH
i (n−τ,k)

λ
(ℓ+1)
i (n,k)

and

p
(ℓ+1)
yi (k) =

∑N
n=1

yi(n−τ,k)X̃
(ℓ+1)
i (n,k)

λ
(ℓ+1)
i (n,k)

. In the above

solution, λ(ℓ+1)
i (n, k) =

2σ
(ℓ)
i (n,k)

2+ρσ
(ℓ)
i (n,k)

and X̃i
(ℓ+1)

(n, k) is
given by

X̃i
(ℓ+1)

(n, k) =Xref,i(n, k)−
ρ

2
λ
(ℓ+1)
i (n, k)

[
R̂

(ℓ)
i (n, k)

+ V
(ℓ)
i (n, k)− P

(ℓ)
i (n, k)

]
.

(21)
Within each frequency band, the vector wi(k) is extracted
from ui(k) and subsequently employed in (4) to construct
the matrix Ŝi, which is used in subsequent processing steps.
Moreover, wi(k) serves as the compressor in (14). By
utilizing Ŝi(n, k), we can estimate σi(n, k) as follows:

σ
(ℓ+1)
i (n, k) = |Ŝi

(ℓ)
(n, k)|2. (22)

2) Step 2: Optimization w.r.t. Ri. In the context of RED,
optimization problem (19) can be solved by

R
(ℓ+1,a)
i = µR̃i

(ℓ+1,a)
+ (1− µ)Ω(R̃i

(ℓ+1,a)
), (23)

with
R̃

(ℓ+1)
i = Ŝ

(ℓ+1)
i −V

(ℓ)
i +P

(ℓ)
i . (24)

µ = ρ
ρ+β0

is a scalar parameter. a = 1, · · · , A denotes
the index for the inner iterations. Here, the denoiser Ω(·)
defined in Eq. (24) is implemented using a pre-trained
Frequency Recurrent Convolutional Recurrent Network
(FRCRN) [17], as shown in Fig. 2(d), chosen due to the
flexibility of the proposed framework.

3) Step 3: Optimization w.r.t. Vi. The solution to this opti-
mization problem can be directly expressed as:

V
(ℓ+1)
i = Ŝi

(ℓ+1)
−R

(ℓ+1)
i +P

(ℓ)
i . (25)

4) Step 4: Optimization w.r.t. Pi. The update of this dual
variable follows the standard procedure:

P
(ℓ+1)
i = P

(ℓ)
i + Ŝi

(ℓ+1)
−V

(ℓ+1)
i −R

(ℓ+1)
i . (26)

As illustrated in Fig. 2(c), the variables ui(k), Ri, Vi, and
Pi are iteratively updated until convergence. The final value
of Ri will then be taken as the estimated speech.

IV. EXPERIMENTAL RESULTS

Experimental settings: To evaluate our proposed method, we
constructed an enclosed environment containing one sound
source and four distributed nodes, as illustrated in Fig. 2. The
room measured approximately 13 m×6.5 m×3.5m, while the
sound source was positioned at (9.60 m, 4.55 m, 1.92 m).
The four nodes in our experiment were equipped with 6, 4,
8, and 2 microphones, respectively. Room impulse responses
(RIRs) were synthesized using the image method [18]. Clean
speech from the Wall Street Journal dataset (WSJ0) [19]
was then convolved with these RIRs to generate distributed,
reverberant speech. The reverberation time (T60) was set to ap-
proximately 790 ms. To simulate a noisy distributed scenario,
white Gaussian noise was added to the convolved speech at
signal-to-noise ratios (SNRs) of 0, 10 and 20 dB. Finally, all
test utterances were segmented into 4-second intervals with a
sampling rate of 16 kHz.
Method comparison and evaluation: In the experiments, we
evaluated four distinct comparative methods. Specifically, WPE
and WPE-a served as baseline methods, both belonging to
the vanilla WPE algorithm: the former utilizes microphones
within an individual node, whereas the latter leverages all
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Fig. 2. Experimental Room Setup.

20 microphones distributed across the entire network. Addi-
tionally, PnPWPE exclusively incorporated data-driven priors,
while DWPE employed a distributed processing strategy. To
objectively quantify the experimental results, we adopted two
widely recognized evaluation metrics in the speech dereverber-
ation task: Perceptual Evaluation of Speech Quality (PESQ)
[20] and Short-Time Objective Intelligibility (STOI) [21].
Implementation details: All comparison methods were im-
plemented in the short-time Fourier transform (STFT) domain
using a Hann window, with a frame length of 32 ms and 75%
overlap. Regarding parameter settings, the filter order L was
set to 20 and the time delay τ was set to 5. The trade-off
parameter ρ was fixed at 0.1, while the scalar µ was set to
0.5 initially and increased in increments of 0.01. We also set
the inner iteration A to 1 to expedite the optimization process.
Furthermore, for both DWPE and the proposed method, nodes
exchange information every other iteration [6].
Results analysis: Table I summarizes the comparative results
for nodes 1 to 3 across all evaluation metrics. These results
indicate that the proposed method outperforms the compar-
ison methods under most experimental scenarios. Specifically,
in terms of the PESQ metric, the proposed method achieves
improvements of 0.733 and 1.059 over PnPWPE and DWPE,
respectively, under noise-free conditions, and improvements
of 0.370 and 0.853 under noisy conditions with an SNR of
0 dB. Furthermore, the proposed algorithm outperforms
WPE-a despite using a smaller filter order. These observations
underscore the effectiveness of incorporating deep data priors
within the distributed dereverberation network.

V. CONCLUSION

In this paper, we proposed an effective method for integrat-
ing data-driven speech priors to enhance the performance of
distributed dereverberation method. Specifically, we adopted
the PnP framework with variable splitting of ADMM, namely
the RED strategy, to facilitate the optimization of DWPE. Ex-
perimental results show that the proposed method significantly
improves distributed speech dereverberation performance in
both noise-free and noisy conditions.
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