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Abstract—In this study, the possibility of detecting infea-
sible inputs for speech enhancement using deep complex U-
Net (DCUNet) is explored because the effectiveness of neural-
network based speech enhancement depends on the coverage of
the training dataset. This study focuses on the distribution of
points in a feature space in DCUNet and aims to detect infeasible
inputs using the Kullback-Leibler divergence between the point
distribution of the training dataset and that of a test sample
in the feature space modeled as a mixture of Laplacians and a
Laplacian, respectively.

Index Terms—speech enhancement, DCUNet, batch normal-
ization, Kullback-Leibler divergence

I. INTRODUCTION

Speech enhancement (SE) aims to recover clean speech
from recordings that are compromised by acoustic noise
[1] [2]. This process leverages different statistical properties
of the target speech and interference signals [3]. Machine-
learning methods extract these properties by learning from
large datasets using discriminative or generative approaches.
The discriminative approach learns the direct mapping from
noisy speech to clean speech [4]. The generative approach
learns prior knowledge of the speech to separate clean speech
from noise [5]. A discriminative approach known as deep
complex U-Net (DCUNet) [6] provides effective complex-
valued masking and drastically improves the output quality.
Neural network (NN) based SE methods have made further
progress in response to the international challenges [7].

The effectiveness of SE depends on various factors, such as
the signal-to-noise ratio (SNR) and noise type [8]. NN-based
approaches depend on the training dataset. These methods
are highly effective for in-domain (ID) samples covered by
a training dataset; however, they tend to be less effective
for uncovered out-of-domain (OOD) samples. Hence, when
an NN-based SE method is deployed in an actual situation
in which no corresponding clean speech is available, it is
beneficial to judge whether noisy speech input is ID. This
enables us to detect an infeasible noisy speech sample, which
is insufficient because the sample is OOD or ID but learned
inadequately. Gathering and analyzing such samples enable us
to build up the training dataset by widening its variety and to
further improve the NN-based model further by retraining.

The detection of OOD samples in classification problems
has been rigorously studied [9] [10] [11]. One approach is to
measure the predictive uncertainty by modeling the distribu-
tion of data features. Hendrycks et al. [12] proposed using
the maximum softmax probability as the confidence score.
ODIN [13] uses temperature scaling and input perturbation to

amplify the ID/OOD separability of the softmax probability.
Lee et al. [14] proposed modeling the input to the softmax
layer as class-conditional probabilistic distribution functions
of Gaussian densities for ID samples. Another approach is
ensemble deep NNs [15] [16], in which the outputs of multiple
individually trained NNs or statistical NNs are combined to
estimate the uncertainty.

Batch normalization (BN) layers have been investigated
from the perspectives of domain shift [17] and OOD detection
[18] [19]. Based on the hypothesis that the domain shift from
the training dataset to the target dataset is reflected in the
statistics estimated at the BN layer, Li et al. [17] demonstrated
that adapting only batch statistics is effective for domain
adaptation. Using mismatched statistics at the BN layer was
shown to be a cause of the overconfidence issue in OOD [20].

However, conventional OOD detection methods are not
directly applicable to SE. In the first approach, the softmax
layer is not included in the NNs for SE. In the second ensemble
approach, several stochastic NNs can be used for SE. However,
it has been reported that even the latest diffusion-based SE
method [8] has difficulty in estimating its performance to
unmatched samples properly [21]. In addition, in SE, it is
common for an input signal to be divided into frames and
then processed. An input signal is mapped to points in the
feature space, and not to a point. Hence, the OOD detection
of a distribution of points is required.

This study focuses on the distribution of points in the feature
space after BN in DCUNet and aims to detect infeasible
samples using the Kullback-Leibler (KL) divergence between
the point distribution of the training dataset and that of a
test sample inspired by [22] as shown in Fig. 1. In this case,
infeasible samples correspond to samples that are not covered
by the training dataset or samples that are covered but not
learned effectively. Specifically, the feature space in the next-
to-last decoder of DCUNet is used. The point distribution is
modeled by a single multivariate Laplacian distribution or a
mixture of such distributions.

Although DCUNet is not a state-of-the-art method in the
context of the international challenges [7], this study focuses
on DCUNet for following reasons: 1) DCUNet represents an
important milestone because it enables the effective handling
of complex-domain representations and drastically improves
the output speech quality. 2) The complex-domain convo-
lutional encoder-decoder structure with skip connections in
DCUNet is simple yet the basis building block of many other
DNN methods. This structure plays an important role when
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Fig. 1. Overview of proposed method

combined with a recurrent NN [23] and a diffusion network
[8] in recent SE methods.

II. PREVIOUS STUDIES

A. DCUNet
DCUNet [6] is an extension of the U-Net structure [24],

which comprises convolutional encoders and decoders with
skip connections. DCUNet refines U-Net by explicitly han-
dling complex-domain operations using complex building
blocks [25]. Figure 2(a) shows the manner in which skip con-
nections combine multi-channel features in DCUNet, where
each thick blue arrow corresponds to the operations performed
in each building block. The building block comprises a com-
plex convolutional layer, complex BN, and complex leaky
ReLU, as shown in Fig. 2(b), except for the final decoder,
in which complex BN is omitted.
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Fig. 2. Structure of DCUNet: (a) In encoding, the frequency information
is reduced while feature information is increased. Skip connection enables to
combine the low-resolution feature from previous decoder and high-resolution
feature from corresponding encoder. Each arrow corresponds to DCUNet’s
complex building block. (b) inside a building block of DCUNet.

B. BN
The BN layer was originally designed to alleviate inter-

nal covariate shifting during training [26]. BN improves the
convergence speed of learning and facilitates a regularizing
effect. Let us consider the case in which the inputs to a BN
layer are a set of convolutional NN features X . Its shape is

expressed as (K,C, F, T ), where K is the number of samples
per batch, C is the number of channels, and F × T matrices
correspond to the spectrogram. Furthermore, F and T indicate
the numbers of frequencies and frames, respectively (i.e., the
height and width of the spectrogram, respectively). The BN
layer normalizes X[k, 0:C, 0:F, 0:T ] ∈ R1×C×F×T using per-
channel statistics, as follows:

X̂[k, c, :, :] =
X[k, c, :, :]− E {X[:, c, :, :]}

Std[X[:, c, :, :] + ϵ
, (1)

where E{ } and Std{ } denotes the expectation and standard
deviation, respectively, and ϵ is a regularization term. The
ranges of the indices are specified using Python style. The
BN outputs the following:

Y [k, c, :, :] =γcX̂[k, c, :, :] + βc, (2)

where γc and βc are parameters to be learned in the BN layer.
During training, the empirical mean and standard deviation

vectors of a mini-batch are used. Furthermore, during infer-
ence, population statistics estimated from the entire training
dataset were used in the original study [26] and were reported
to be better than the statistics estimated using the exponential
moving average (EMA) [27], although the use of the EMA
remains popular.

III. FEATURE SPACE AND ITS DISTRIBUTION STATISTICS

This study focuses on the point distribution in a feature
space in DCUNet and aims to detect infeasible inputs using the
KL divergence between the point distributions of the training
dataset and a test sample. Specifically, the feature space after
BN in the next-to-last decoder of DCUNet is used. The point
distribution is modeled by a single multivariate Laplacian
distribution or a mixture of such distributions.

The next-to-last decoder is selected based on the analogy
with the case of classification tasks, where the last softmax
layer or the input to this layer is the focus. In the case of
DCUNet, the focus is on the output of the next-to-last decoder
used in the last decoder layer.

The proposal of this study consists of the following three
parts:

• Step A: pre-processing of the training dataset and pre-
trained NN before deployment,

• Step B: processing of a noisy input when deployed,
• Step C: evaluation of the proposed method (Steps A and

B) using clean oracle speech.
Steps A and B involve mapping from a noisy input to points
in the feature space and fitting the point distribution to a
probabilistic distribution.

Step A
Mapping: Let the output of the BN layer correspond

to the noisy input sample n (0 ≤ n < N) be X̂n
.
=

X̂[n, 0:C, 0:F, 0:T ] ∈ C1×C×F×T . As its summary statistics,
the vectors of the feature-wise means and standard deviations
µn,σn ∈ CC are expressed as

µn =
[
µn[0] · · · µn[C − 1]

]
, (3)

σn =
[
σn[0] · · · σn[C − 1]

]
, (4)
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where

µn[c] =E
{
X̂[n, c, 0:F, 0:T ]

}
, (5)

σn[c] =Std
{
X̂[n, c, 0:F, 0:T ]

}
. (6)

µn and σn ∈ CCB are computed from F × T points.
This study further considers dividing the axis of frequency

F into B blocks to improve the representation ability of the
summary statistics inspired by [28] [29]. µn,σn ∈ CCB are
computed from F × T/B points and expressed as

µn = [µn[0, 0] · · ·µn[C−1, 0] µn[0, 1] · · · · · ·µn[C−1, B−1]] ,
(7)

σn = [σn[0, 0] · · ·σn[C−1, 0] σn[0, 1] · · · · · ·σn[C−1, B−1]] ,
(8)

where

µn[c, b] =E
{
X̂[n, c,

b

B
F :

b+ 1

B
F, 0:T ]

}
, (9)

σn[c, b] =Std
{
X̂[n, c,

b

B
F :

b+ 1

B
F, 0:T ]

}
. (10)

Fitting: In this study, the M -cluster model is applied to
the point distribution of the training dataset because it has
a higher representation ability and can handle complex point
distributions. When M = 1, the vectors of the means and
standard deviations of the cluster are computed straightfor-
wardly from µn and σn (0 ≤ n < N). When M > 1, we
consider N points expressed by the vectors pn = [µn σn].
The k-means++ algorithm [30] [31] is applied to obtain M
clusters from these N points. The summary statistics of the
m-th cluster (1 ≤ m ≤ M) are computed as

µ(m) = E {µñ} , (11)

σ(m) = E {σñ} (12)

where ñ ∈ cluster m. A multivariate Laplacian distribution
with a feature-wise mean µ(m) and scale σ(m)/

√
2 is assigned

to the cluster m because the use of the Laplacian distribution
is expected to lead to more robust results than that of the
Gaussian distribution. The threshold of the KL divergence dth
is set to a certain value.

Step B:
A noisy input is mapped to a point distribution in the feature

space, as in Step A. The feature-wise mean and standard
deviation are computed and fitted to a multivariate Laplacian
distribution, as in Step A. The KL divergence [32] between
the above Laplacian distribution and the closest one of the
training dataset [14] is computed using the summary statistics.
When the KL divergence > dth, the sample is estimated to be
infeasible.

Step C:
Instead of selecting a single threshold dth, the standard

evaluation method for OOD detection uses a set of different
thresholds and compares the resulting performances [31]. We
can run the detector for a set of thresholds and plot the
true positive rate (TPR) vs. the false positive rate (FPR) as

an implicit function of dth. This is known as the receiver
operating characteristic (ROC) curve. Its quality is summarized
using the area under the curve (AUC). Higher AUC scores are
better with a maximum of 1. To apply the aforementioned
standard method, the feasible samples are defined using the
training dataset.

Training data: Samples in the training dataset are divided
into segments according to the input SNR because the im-
provement in the scale-invariant signal-to-distortion ratio (SI-
SDR) [33] tends to be larger for a lower SNR. In each segment,
the lower limit of the expected SI-SDR improvement is set to
µ − σ, where µ and σ are the mean and standard deviation
of the SI-SDR improvement in that segment, respectively.
Samples satisfying the SI-SDR improvement ≥ µ − σ are
classified as feasible. The reason for setting the lower limit
is that samples that are inadequately learned by the NN in the
training dataset remain.

Test data: Noisy speech input in matched and unmatched
test datasets is classified as feasible or infeasible based on its
input SNR, expected SI-SDR improvement, and actual SI-SDR
improvement. This classification result is used to evaluate the
estimate based on the KL divergence. The TPR and FPR are
obtained by aggregating comparisons. The AUC is obtained
by plotting the ROC curve.

Fig. 3. Dependency of (a) SI-SDR improvement of each sample on input
SNR and (b) KL divergence of each sample on input SNR for DCUNet-V.
The blue dots indicate the samples from the matched dataset and the orange
dots indicate those from the unmatched dataset.

IV. EVALUATION

A. Settings
In this study, DCUNet-16 [6] was used as the SE method.

DCUNet-16 uses eight building blocks for encoding and eight
blocks for decoding. We used a 1024-point short-term Fourier
transform (STFT) with a 256-point shift. DCUNet was trained
using the WSJ0-CHiME3 and VB-DMD training datasets.
The WSJ0-CHiME3 dataset combines clean speech utterances
from the Wall Street Journal (WSJ0) dataset [34] with noise
signals from the CHiME3 dataset [35]. Similarly, the VB-
DMD dataset, which is derived from the publicly available
VoiceBank-DEMAND collection [36], is a widely recognized
benchmark for evaluating single-channel SE techniques. The
input SNR was divided into four segments: 0∼5 dB, 5∼10
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Fig. 4. Relation between KL divergence and SI-SDR improvement of
DCUNet-V with M = 1 and B = 2 in four input SNR segments.

Fig. 5. Variance of AUC on training dataset, number of clusters M , and
number of frequency division B: (a) DCUNet-V, (b) DCUNet-W.

dB, 10∼15 dB, and 15∼20 dB. The training datasets were
divided accordingly and the expected SI-SDR improvements
were defined for each segment. Hereafter, DCUNet-16 trained
with VB-DMD and WSJ0-CHiME3 are denoted as DCUNet-V
and DCUNet-W, respectively. Both DCUNet-V and DCUNet-
W were tested using the test datasets VB-DMD and WSJ0-
CHiME3. The proposed method has two parameters: the
number of clusters M (=1 ∼ 5) and the number of frequency
divisions B (= 1, 2, 4).

B. Experiments
First, the properties of the KL divergence in the matched

and unmatched datasets were evaluated. Figure 3 shows the
scatter plots of DCUNet-V (a) between the input SNR and
SI-SDR improvement, and (b) between the input SNR and
KL divergence, where M = 1 and B = 2. As shown in
Fig. 3, the SI-SDR improvement was dependent on the input
SNR. Matched and unmatched samples were not completely
separated but partially overlapped along the axis of the SI-
SDR improvement. The samples from the unmatched dataset
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Fig. 6. Typical ROC curves and AUCs of DCUNet-V with M = 1 and
B = 2.
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Fig. 7. Typical ROC curves and AUCs of DCUNet-W with M = 5 and
B = 4.

tended to have a lower SI-SDR improvement and higher KL
divergence than those from the matched dataset.

Figure 4 shows the relationship between the KL divergence
and SI-SDR improvement for DCUNet-V with M = 1 and
B = 2. The samples from the matched and unmatched datasets
formed two clusters. The unmatched cluster exhibited a lower
SI-SDR improvement and higher KL divergence. This suggests
that the KL divergence may be a key to detecting infeasible
samples.

Next, the proposed method was evaluated using the AUC,
where the union of the test datasets of VB-DMD and WSJ0-
CHiME3 were used. The AUC is dependent on the training
dataset, number of clusters, and frequency division, which are
given as the parameters of the proposed method, and the vari-
ance of the coefficients of DCUNet. To observe the variance
of the AUC, NN coefficients that were trained independently
four times up to 200 epochs were used. The proposed method
was applied to the NN coefficients for each training run at
epochs= 120, 140, 160, 180, and 200. The results are shown
in Fig. 5. For DCUNet-V, the AUC was best at M = 1 and
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B = 2. For DCUNet-W, increasing the number of clusters M
resulted in a better AUC. An increase in B also resulted in a
better AUC. As shown in Fig. 5, the point distribution in the
feature space of DCUNet-V was sufficiently modeled using
a single multivariate Laplacian distribution. In contrast, the
point distribution of DCUNet-W appeared to be more complex
and required more clusters. This suggests that training with
different datasets leads to different point distributions in the
feature space and that a more complex probabilistic model is
necessary for DCUNet-W.

Finally, Figs. 6 and 7 show the typical best ROC curves
of DCUNet-V with M = 1 and B = 2 and DCUNet-W with
M = 5 and B = 4. The AUCs of DCUNet-V and DCUNet-W
were 0.859 and 0.779, respectively.

V. CONCLUSION

This study has proposed a method for detecting infeasible
inputs to DCUNet. The method focuses on the point dis-
tribution in the feature space of the next-to-last decoder of
DCUNet, models the point distribution as a mixture of mul-
tivariate Laplacians for the training dataset and a multivariate
Laplacian for a test sample, and detects infeasible inputs using
the KL divergence. DCUNet trained with VB-DMD yielded
an AUC of 0.859 when the point distribution of the training
dataset was modeled by one cluster. That with WSJ0-CHiME3
yielded an AUC of 0.779 when the point distribution of the
training dataset was modeled using five clusters.
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