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Abstract—Bioacoustic sound event detection (BioSED) is cru-
cial for biodiversity conservation but faces practical challenges
during model development and training: limited amounts of
annotated data, sparse events, species diversity, and class im-
balance. To address these challenges efficiently with a limited
labeling budget, we apply the mismatch-first farthest-traversal
(MFFT), an active learning method integrating committee voting
disagreement and diversity analysis. We also refine an existing
BioSED dataset specifically for evaluating active learning algo-
rithms. Experimental results demonstrate that MFFT achieves a
mAP of 68% when cold-starting and 71% when warm-starting
(which is close to the fully-supervised mAP of 75%) while using
only 2.3% of the annotations. Notably, MFFT excels in cold-start
scenarios and with rare species, which are critical for monitoring
endangered species, demonstrating its practical value.

Index Terms—active learning, mismatch-first
traversal, bioacoustic sound event detection

farthest-

I. INTRODUCTION

Bioacoustic sound event detection (BioSED) [1] aims at
analyzing the vocal activity of target species in audio record-
ings. It is essential for large-scale biodiversity monitoring
and ecological conservation efforts. Conventional supervised
learning approaches [1-4] require extensive annotated data for
model training to achieve good performance. This challenge is
further compounded when detecting species not present in the
training data (unseen species). These limitations motivate the
development of labeling-efficient and generalizable methods
specifically optimized for bioacoustic monitoring scenarios.

Recent label-efficient learning approaches, including self-
supervised [5, 6], semi-supervised [7], and few-shot [8, 9]
methods, have shown promise in bioacoustic monitoring.
However, self-supervised approaches often suffer from a gap
between the training process and target tasks. Semi-supervised
methods can propagate pseudo-labeling errors, especially in
class-imbalanced bioacoustic data. Few-shot learning struggles
due to inadequate temporal pattern characterization and cross-
device prototype distortion.

These limitations stem from static sampling methodologies
on training data that lack adaptive instance prioritization
during annotation. This has motivated active learning [10] —
a framework that selects the most informative data for label-
ing based on uncertainty, diversity, or disagreement, thereby
improving model performance while minimizing the number
of required annotations.
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While active learning illustrates potential in general audio
tasks [11-13], its application to BioSED faces unique chal-
lenges due to the sparsity and class imbalance of bioacoustic
events. Existing BioSED active learning methods often rely
on uncertainty, diversity, or hybrid uncertainty-and-diversity-
based approaches. Uncertainty methods [14—-18] seek instances
with the lowest model confidence to select the data near
the decision boundary, but may lead to volatile behavior
and easily get trapped in local minima [19, 20]. Diversity
methods [21] are effective initially, but may prioritize outliers
in later iterations, which might be harmful for the perfor-
mance [22]. Even if hybrid uncertainty-and-diversity-based
methods [23-28] combine the advantages from both, they are
still constrained by their reliance on a single model, offering
a comparatively restricted information gain in comparison to
disagreement-based methods [29].

To address these challenges, we adapt the mismatch-first
farthest-traversal (MFFT) [12] framework for BioSED. MFFT
leverages prediction disagreement from committee voting to
distribute the informativeness dependency of sample selec-
tion across multiple models, while employing diversity-aware
sampling to alleviate cold-start problems. To our knowledge,
this work is the first application of a hybrid disagreement-
and-diversity-based active learning approach to BioSED. Ex-
perimental results demonstrate that MFFT provides a more
efficient and stable solution for active learning-based BioSED
in comparison to disagreement or diversity-based baselines.
In conclusion, our contributions are:

- We adapt and evaluate MFFT for the BioSED, combining
committee disagreement and diversity analysis to improve
sample selection over baselines. On the proposed dataset, it
achieves a performance close to that of fully annotated super-
vised learning while using only a small portion of annotations
in the cold start scenario.

- We refine the DCASE 2024 Task 5 dataset [30, 31] for
active learning training and evaluation. This multi-label (in-
cluding common and rare species) benchmark focuses on
active learning’s efficiency within a limited labeling-budget
and extensibility to novel species.

- We provide a comprehensive analysis of MFFT’s perfor-
mance, including comparisons to baselines (random sampling,
pure disagreement/diversity methods) and investigation of its
effectiveness in cold-start and rare species detection scenarios.
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II. METHODOLOGY

A. Active learning for BioSED

We process longer audio recordings in fixed-length sam-
ples x for computational efficiency. The goal is to train
a model fy to give the prediction of the time-series label
y € {0,1}T>Nets indicating the presence of each of the N
target classes in 7' time segments within each sample x.

To enhance model training using a minimal labeling budget,
active learning is employed. It starts with a dataset of
unlabeled audio samples U, and iteratively selects samples to
be labeled. The model will be trained after each iteration using
the samples labeled so far. It minimizes annotation effort by
selecting the most informative samples, thereby maximizing
model performance gain, and formally is defined as:

K
Objective:  minE (g, y)p,, [0(fo (), y)] +X- > e(Xk)
Generalization Risk k;l,_/

Annotation Cost

st. 0 =Train(Lr), Xir1=7(Ly, U, fo)

o Generalization Risk: The expected loss ¢ of the detec-
tion model fy is computed over test sample-label pairs
(:17 ) y) ~ Py

o Annotation Cost: Cumulative cost ¢ of labeling K
sample groups &}, selected by policy m. A > 0 weights
the generalization risk and the annotation cost.

e Model Training: Model parameters 6 trained on the set
of labeled samples L = Uszl Xi.

« Sample Selection: Policy 7 selects the next audio sample
group A1, informed by Ly and fy, and moves the
samples from unlabeled set Uy, to Ly 1.

In our BioSED framework, we first pre-train an audio encoder
and freeze its weights. Raw audio samples are then encoded
into temporal vector representations x, € RT*P using this
pre-trained encoder, where D is the output dimension of
the encoder. The active learning process is applied to train
a multi-layer perceptron (MLP)-based classifier head with
sigmoid activations to constrain the output values between 0
and 1. It is trained on top of this frozen encoder using the
encoded temporal representations x. and corresponding time-
series labels y for training, resulting in the trained model fj.
Although the model gets trained and produces output at the
resolution of segments, to improve computational efficiency,
we utilized temporal max-pooled representations instead of
whole segments of a sample in the selecting process.

B. Active Learning Strategies

We evaluate several active learning strategies for BioSED,
ranging from a simple random baseline to more sophisticated
methods leveraging disagreement and diversity.

1) Random Sampling (RS) serves as a baseline, selecting
audio samples for annotation uniformly at random from the
unlabeled set U,. This method requires no model predictions
for sample selection. While simple, RS provides a crucial
benchmark to assess the effectiveness of more informed active
learning strategies in the context of BioSED.

2) Mismatchness Priority (MP) leverages the disagreement
between a committee of models to identify informative audio
samples. In our implementation, the committee consists of
two models: the MLP classifier fy in Section II-A and a
nearest neighbor (NN) classifier fy,,. The MLP classifier is
a parametric model trained alongside the active learning pro-
cess, while NN serves as a non-parametric, simpler model to
mitigate potential overfitting problems and enhance committee
diversity. In MP experiments, NN classifier naturally produces
binary outputs by propagating the label of the nearest sample.
To ensure consistency, we threshold the MLP’s output using
the optimal threshold (in terms of the best mean average
precision) derived from the validation set.

For each audio sample z in the unlabeled set Uy, we
compute the mismatch score:

m(z) = || fo(z) = Fa(@)]]; (1)
as the count of class-wise discrepancies in the temporal max-
pooled predictions from the committee, where f, and ?HNN are
the temporal max-pooled binary predictions from the MLP and
NN models, respectively.

After computing mismatch scores for all samples of the
current unlabeled set Uy, the policy myp selects |Xj11]| (the
pre-defined group size) samples with the highest mismatch
scores. In cases where many samples exhibit the same mis-
match score, samples will be randomly selected from them.

MP prioritizes audio samples where the committee models
disagree, hypothesizing these samples are more informative for
refining the decision boundaries in BioSED. However, MP can
suffer from cold-start issues when models are initially weak.

3) Farthest Traversal (FT) focuses on maximizing the
diversity of selected audio samples. We compute a cosine
distance of the temporal max-pooled representation of each
pair of audio samples in the dataset (derived from the frozen
pre-trained encoder).

The initial sample is randomly chosen. After that, FT
incrementally selects each new sample as:

& = argmax 13%1? d(x,s) (2)
until the number of selected samples reaches the pre-defined
group size |Xjy1| of iteration k. Here, minses d(x, s) is the
minimum cosine distance from a sample x to the set S of
already selected samples, and ¢/ means the unlabeled set. After
every sample selection, z will be moved from ¢/ to S.

FT promotes diversity in the selected samples, which is
beneficial in BioSED to capture the variability in acoustic
environments and species vocalizations, especially in the initial
stages of active learning. However, in datasets with sparse
bioacoustic events and prevalent noise, FT might inadvertently
select noisy samples, potentially hindering performance gains.

4) Mismatch-First Farthest-Traversal (MFFT) combines
the strengths of MP and FT to balance disagreement and
diversity throughout the active learning process. Initially, to
mitigate the cold-start problem where mismatch scores are
unreliable, MFFT prioritizes diversity using the FT strategy. In
subsequent iterations, unlabeled audio samples in U}, are sorted
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based on their mismatch scores using Eq. (1), and selected
according to this ranking. When multiple unlabeled samples
have the same mismatch score and their number exceeds the
remaining group size, MFFT applies the FT strategy within
such a subset. Specifically, it incrementally selects the farthest
sample to the selected set S within this unlabeled subset Us.:

T = arg zrenlifb I;’élél d(x,s) 3)
where Vz;, z; € Usyy, m(z;) = m(z;), with the remaining
notation consistent with Eq. (2).

MFFT effectively balances the exploitation of informative
samples (via mismatch priority) and the exploration of diverse
samples (via farthest traversal), offering a robust active learn-
ing strategy particularly suited for the challenges of BioSED,
including cold-start scenarios and noisy acoustic environments.

III. EXPERIMENTAL SETUP

This section introduces the experimental setup, detailing
dataset design, data preprocessing, model selection, and hy-
perparameter configuration. In this experiment, encoder pre-
training follows a standard supervised learning paradigm. For
active learning, we use datasets with existing labels but simu-
late the annotating process by initially ignoring all labels and
then iteratively extracting the labels for the selected samples.

A. Dataset Design & Data Preprocessing

To evaluate active learning for BioSED under realistic
conditions, we curated a dataset based on the DCASE 2024
Task 5 dataset [30, 31]. This custom dataset was specifically
designed to address key challenges in BioSED: extreme class
imbalance, rare species, and generalization to novel species
not encountered during encoder pre-training.

The original DCASE BioSED development set is pre-
partitioned into training and validation sets. The training set
includes recordings of 46 species classes, while the validation
set contains recordings of 7 other species classes. Both sets
are provided with temporal multi-label annotations.

For encoder pre-training, we further divided the original
training set into two subsets: 80% for encoder pre-training
and 20% for validation. Encoder parameters for active learning
were selected based on the best mAP on this encoder valida-
tion subset, ensuring the encoder was optimized for robust
feature extraction before active learning.

For active learning experiments, the original validation set
(unseen species) was partitioned into three subsets: 70% for
active learning training, 15% for validation, and 15% for
testing. These subsets were used exclusively for evaluating
the active learning methodologies detailed in Section II-B. It
is important to note that the class distribution within these
datasets is markedly unbalanced. For example, the active
learning training set contains a substantial proportion of
negative samples (only background noise without any target
species), accounting for 18680 samples, 83% of the entire
set. In contrast, classes such as ‘Mosquito’, ‘Red_Deer’, and
‘Pilot_whale_foraging_buzzes’ are represented by 1207 (6%),
1024 (5%), and 1089 (5%) samples, respectively. Furthermore,
extremely rare classes, such as ‘Meerkat_alarm_call’ and

‘Meerkat_move_call’, are represented by only 19 (0.09%) and
6 (0.03%) samples, respectively.

Prior to feature extraction, all audio recordings were resam-
pled to 32 kHz. Audio files were split into 10-second samples
using a sliding window with a 5-second stride. Each sample
was processed using short-time Fourier transform (STFT) with
a Hann window (1024 length), 1024 fast Fourier transform
length, and 320 hop size. Log mel spectrograms were then
computed from the STFT using a mel filterbank with 64 bands,
ranging from 50 Hz to 14 kHz, and a minimum amplitude
of 1 x 10719, The log mel spectrograms served as input
features for pre-training the encoder. Each 10-second sample
was then encoded using PANNSs [32] encoder, which contains
5 pooling layers with a pooling factor of 2. This results
in 2;;0%%0 = (.32 s time interval between embeddings and
T = 32 embeddings per each sample when the last 8 STFT
frames were symmetric-padded during encoding.

During the active learning stage, the pre-trained encoder
was frozen and used to extract features, ensuring that the
evaluation focused on active learning strategies, independent
of feature extraction variability. Segment-level mAP and F1-
score were used as primary metrics to quantitatively evaluate
active learning performance on this dataset. This dataset de-
sign, incorporating class imbalance, rare species, and unseen
species, is crucial for rigorously assessing active learning in
realistic BioSED scenarios.

B. Model Selection & Hyperparameter Configuration

Since the primary focus of this study is to compare the
effectiveness of different active learning methods rather than
evaluating the feature extraction capabilities of encoders, we
adopted the widely-used structure, Pretrained Audio Neural
Networks (PANNs) [32], as the encoder. The PANNs encoder
was fine-tuned on the pre-training dataset (Section III-A) and
its parameters were fixed based on validation set performance.
For active learning classification, we employed a simple and
commonly used Multilayer Perceptron (MLP) classifier.

1) Encoder Pretraining: Encoder pre-training used the
following settings: Batch size: 128; Adam optimizer (initial
learning rate 5 x 10~%, betas = [0.9,0.999], eps = 1 x 1078,
weight decay = 0); ReduceLROnPlateau scheduler (halving
LR if validation mAP doesn’t improve for 5 epochs, min LR
5x107%); Data augmentation (class balancing, frequency band
masking up to 2 masks of width 8, Gaussian noise).

2) Active Learning: Active learning was performed itera-
tively with an annotation budget of 500 samples (2.3% of the
21,414 sample dataset), simulating a limited labeling-budget.
In each iteration, 50 samples (group size) were selected from
the unlabeled set using methods from Section II-B. Samples
labeled until each iteration were used to train the model fj.
To isolate active learning effectiveness, all training hyperpa-
rameters, except data augmentation, were kept consistent with
encoder pre-training. Data augmentation was intentionally
excluded in active learning to maintain a direct mapping be-
tween encoded features and original audio, preserving sample
selection consistency based on unaugmented data.
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Fig. 1. Performance comparison on test set: mAP (left), F1 score (middle), and rare species count (right) as a function of the number of annotations.

Number of annotated samples
Methods | Start 50 100 150 200 250 300 350 400 450 500 | full
RS cold | 26(x4) 28(x4) 31(£6) 33(£5) 35(5) 40(x6) 43(x7) 44(x5) 46(x6) 48(£6) | 75(%2)
MP cold | 19(x1) 26(x2) 29(£1) 34(£5) 37(x6) 39(x7) 41(£7) 41(£8) 42(x8) 43(x9) | 75(%2)
FT cold | 43(x5) S51(x4) S54(+4) 55(%2) 59(x2) 58(%2) 60(£2) 59(%£2) 61(x2) 61(%2) | 75(%2)
MFFT cold | 38(x4) 49(x4) 49(£5) 57(+4) 60(x6) 61(x6) 65(x5) 65(x4) 66(+6) 68(£3) | 75(£2)
RS warm | 58(x4) 61(%3) 61(£2) 63(£2) 65(£2) 64(£2) 66(%3) 65(x3) 66(x2) 67(x1) | 75(£2)
MP warm | 56(4) 59(%4) 59(£2) 65(£3) 66(£2) 67(£2) 69(x2) 68(x2) 70(x1) 7T0(x3) | 75(£2)
FT warm | 57(3) 60(%4) 61(%4) 62(%3) 62(x2) 62(x1) 63(£2) 63(%£2) 64(xl) 65(x2) | 75(%2)
MFFT | warm | 57(£3) 63(£5) 63(x3) 66(+3) 68(+2) 67(x1) 68(x1) 68(£3) 70(£2) 71(x2) | 75(x2)
TABLE I

AVERAGE OF MAP (IN PERCENTAGES) OVER FIVE DIFFERENT TRIALS AND ITS STANDARD DEVIATION
‘FULL’ FOR USING ALL 21,414 LABELS OF SAMPLES IN THE TRAIN SET

3) Fully Annotated Supervised Learning: To assess the
efficiency of the proposed methodologies by comparing, we
trained an MLP classifier, with an architecture identical to
that of fp, via supervised learning utilizing all 21,414 la-
beled samples from the dataset. Crucially, to ensure a fair
comparison, training conditions mirrored those of the active
learning experiments: the encoder was kept frozen, and data
augmentation was also omitted.

4) Experimental Reproducibility: To minimize the impact
of randomness, all experiments were repeated 5 times, and the
results show the average value and standard deviation.

C. Scenarios

To comprehensively evaluate the performance of active
learning methods under various challenging conditions, we
designed specific scenarios: cold start, warm start, and rare
species detection. Each scenario addresses a unique aspect of
real-world bioacoustic data challenges.

1) Cold Start & Warm Start: ‘Cold Start’ assumes no pre-
labeled positive examples, allowing us to evaluate the initial-
ization performance of the active learning methods themselves.
In contrast, “Warm Start’ provides a small number of labeled
positive samples for each class to simulate a more realistic
starting point. In this study, we initialized the labeled set with
randomly selected Ny = 5 positive samples per class, totaling
5 x 7 = 35 samples. The remaining 15 samples were selected
through each active learning strategy.

2) Rare Species Detection: In the Rare Species Detection
scenario, we focus on the model’s ability to detect extremely
rare species in the dataset. As described in Section III-A,

the training set for active learning contains only 19 sam-
ples of the ‘Meerkat_alarm_call’ class and 6 samples of the
‘Meerkat_move_call’ class. These two classes are challeng-
ing to detect due to their scarcity. For each method, we
measure the cumulative number of samples of these rare
classes selected (referred to as ‘rare species count’). A higher
count indicates better performance in selecting rare species,
reflecting the method’s sensitivity to minority classes.

IV. RESULTS & DISCUSSION

Cold-Start and Warm-Start Scenarios: In both cold-
start and warm-start settings, MFFT demonstrates strong per-
formance across annotation budgets (Table I and Figure 1).
In cold-start, FT initially leads at smaller budgets (50-150
samples) due to its diversity-focused sampling, crucial when
labeled data is scarce. However, as the number of annotations
increases, MFFT surpasses FT, achieving a significantly higher
mAP of 68% at 500 samples—outperforming FT (61%), RS
(48%) and MP (43%). In warm-start, MFFT still excels to a top
mAP of 71% at 500 samples, closely followed by MP (70%)
and RS (67%). Notably, FT’s advantage diminishes in warm-
start, suggesting that the benefits of pure diversity decrease
when initial labels are available. In such cases, FT even un-
derperforms RS. MP is competitive in warm-start but weak in
cold-start with decreased model maturity. These comparisons
highlight MFFT’s performance, effectively balancing initial
diversity exploration (cold-start FT) and later exploitation of
informative samples through disagreement (warm-start MP).

Method Efficiency, Sensitivity and Trade-offs: MFFT
shows remarkable annotation usage efficiency, achieving 68%
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and 71% in terms of mAP with only 2.3% (500 samples) of
the total dataset in cold and warm-start scenarios, respectively.
In contrast, the mAP of the fully annotated supervised learning
is 75%. This highlights MFFT’s ability to significantly reduce
annotation costs while maintaining high performance. Fur-
thermore, MFFT exhibits superior sensitivity in detecting rare
species. As shown in Figure 1, MFFT consistently identifies
a higher rare species count of samples compared to RS and
MP across annotation iterations, indicating its effectiveness in
capturing minority classes critical for biodiversity monitoring.
While FT also shows good initial performance in rare species
sample detection due to its diversity focus, MFFT’s balanced
approach leads to better rare species sample discovery and
overall detection performance. The results reveal a trade-
off between diversity and informativeness in active learning
strategies. Diversity-driven methods like FT are beneficial for
initial exploration, while informativeness-driven methods like
MP become more effective as models mature. MFFT effec-
tively balances these aspects, proving robust across scenarios.
However, MFFT’s reliance on pairwise distance computations
may pose scalability challenges for very large datasets. Fu-
ture work could explore efficient quantized and soft-valued
approximations for enhanced applicability in bioacoustics.

V. CONCLUSION

In this study, we systematically evaluated four active learn-
ing strategies, including RS, MP, FT and MFFT, on a bioacous-
tic dataset derived from DCASE 2024 Task 5. Our experiments
focused on challenging scenarios, including extreme class
imbalance, rare species detection, and noise exclusion.

The results demonstrate that MFFT’s mAP outperforms
other methods in both cold-start (68%) and warm-start (71%)
scenarios, which are close to fully supervised performance
(75%) with only 2.3% of the total annotations. This highlights
its ability to effectively balance informativeness and diversity,
making it a robust solution for real-world applications.
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