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Abstract—Deep learning models are now ubiquitous in many
applications, yet they remain vulnerable to adversarial examples.
The robustness of transformer-based models in the audio domain,
however, has not been thoroughly investigated. To address this,
in this paper, we evaluate the robustness of three state-of-
the-art pretrained transformer-based architectures for sound
event classification. We propose a method to generate adver-
sarial examples with a fixed signal-to-noise ratio in a black-
box setting, utilizing an evolutionary algorithm. This approach
enables a refined assessment of model robustness against varying
levels of imperceptibility. To ensure statistical significance and
variability, we conduct extensive experiments using two bench-
mark datasets, reporting success rates from ~10% to ~95%
depending on SNR. Our findings reveal significant vulnerabilities
in current state-of-the-art transformer models, demonstrating
that, similar to the image domain, model performance may not
correlate with robustness. These results underscore the need
to re-evaluate both the performance and robustness of such
models. We publicly release our code and adversarial examples
in https://magcil.github.io/audio-adversarial-attacks/, showcasing
the correlation between SNR and imperceptibility.

Index Terms—Deep Learning, Sound Event Classification,
Robustness, Adversarial Attacks.

I. INTRODUCTION

Advancements in deep learning have significantly improved
the performance of sound event classification systems. State-
of-the-art (SOTA) deep learning models now achieve re-
markable accuracy across diverse audio datasets. However,
their vulnerability to adversarial examples—carefully crafted
inputs designed to mislead models—has emerged as a critical
concern. These attacks pose a serious threat to system security,
enabling attackers to manipulate decisions by introducing
perturbations that are imperceptible to human listeners. Such
vulnerabilities highlight the need to understand why these
models are susceptible to such inputs, and re-evaluate the
performance and robustness before deploying them in real-
world applications.

Szegedy et al. [1] initiated the field of adversarial attacks
by demonstrating the existence of adversarial examples in the
image domain. This work led to the development of a series
of methods for crafting adversarial examples. These methods
can be broadly classified into white-box approaches [2]-[4],
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where the adversary has full access to the model, and black-
box approaches [5]-[7], where the target model is unknown.

Based on these studies, researchers have extended adversarial
techniques to the audio domain, primarily targeting Automatic
Speech Recognition (ASR) systems [8]-[10]. However, the
exploration of adversarial attacks in non-speech-related audio
tasks remains limited. In the context of sound event classi-
fication, recent works [11]-[15] have focused on generating
adversarial examples that can deceive machine learning models
while remaining imperceptible to human listeners. Although
these studies demonstrate the vulnerability of sound event
detection systems to adversarial attacks, they do not consider
modern transformer-based architectures, which represent the
current SOTA in many audio classification tasks [16]-[18].
To address these limitations, in this paper, we evaluate the
robustness of three SOTA transformer-based architectures for
sound event classification. In detail, our contributions are
summarized as follows:

o To the best of our knowledge, this is the first work
to evaluate the robustness of SOTA transformer-based
models for sound event classification against adversar-
ial attacks. Through our experiments, we demonstrate
that model performance is uncorrelated with robustness.
This phenomenon, previously observed in the image
domain [19], is now also verified in the audio domain.

o We utilize an evolutionary algorithm to generate adversar-
ial examples in a black-box setting, a realistic and practi-
cal scenario. Although this approach has been employed
in prior works [10], [13], we refine it to generate adver-
sarial examples with a fixed Signal-to-Noise Ratio (SNR).
Additionally, we introduce an initialization strategy that
mimics the auditory masking effect. These modifications
enable a comprehensive evaluation of model robustness
against adversarial examples at varying levels of imper-
ceptibility.

o We perform large-scale experiments on two benchmark
datasets to ensure statistical significance, enhancing the
reliability of our findings.

The structure of this paper is as follows: In Section II, we
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present the adopted methodology for generating adversarial
examples with fixed SNR. Section III details the experimental
setup, including the datasets used, preprocessing steps, the
models under attack, and the implementation specifics. In
Section IV, we present and analyze the experimental results.
Finally, Section V concludes the paper by summarizing the key
findings and discussing potential directions for future research.

II. METHODOLOGY

Notation: Let f : R? — [0,1]¥ be a neural network repre-
senting the sound event detector. The detector takes as input
an audio waveform z € RP, and outputs a K —dimensional
probability vector f(x), where K denotes the number of pre-
dicted classes. The vector f(x) corresponds to the posteriors
of the neural network, and f(z); denotes the k" coordinate
of f(z). For an audio event z € RP, the prediction of the
model is given by c¢(x) = argmax; << f(2)k.

A. Black-Box Audio Adversarial attacks

General Formulation: In the black-box setting, the only
information that is accessible is the probability vector f(x).
The adversary’s objective is to find a perturbation §* € RP
such that the event x,q, = 49" is misclassified by the model,
i.e., ¢(z) # c(2aay)- A critical constraint is that §* must remain
imperceptible, meaning it should not be detectable by human
observation. In this case the optimal solution §* is formulated
as 0* = argmingcpo ||6] such that ¢(x + J) # c(z) for all
§ € RP. Thus, imperceptibility can be achieved by minimizing
the perturbation with respect to a chosen norm ||-||.
Reformulation: The intractability of the above problem due
to the constraint ¢(x + &) # c(x) leads to an alternative
reformulation to approximate 6*. To this end, to find the
perturbations 0 that satisfy c¢(x + ¢) # c¢(x) we minimize the
loss function

L<xadv) = f(xadv)c(m) - 1I§r}€aéXKf<xadv)k- (1

k#c(z)
The attack is successful when L(x,q,) < 0. In this case, there
will be at least one posterior f(zaav)r > f(Zadv)c(z). With
k # c(x), which implies ¢(Zuav) # ().

B. Optimization Algorithms

To minimize the loss function L in (1) we employ a meta-
heuristic optimization strategy. In detail, we utilize Particle
Swarm Optimization (PSO) [20], a population-based evolu-
tionary algorithm. Additionally, we normalize the adversarial
perturbation to achieve a fixed SNR. This framework is general
and can be used with any evolutionary algorithm, such as
Differential Evolution (DE) [21]. In our experiments, we
utilized DE as well and did not observe any difference; hence,
in this manuscript we present only PSO.

Initialization: While the SNR constraint is a necessary con-
dition for imperceptibility, it is not always sufficient. For
example, if the adversarial perturbation contains high-energy
components in perceptually salient regions of the original
input, it may become noticeable despite satisfying the SNR

constraint. To address this, we initialize the perturbations
based on the input waveform, leveraging principles from
the auditory masking effect—where a strong signal can hide
nearby lower-amplitude components from human perception.
Formally, for an audio event x € RP, the it" perturbation is
initialized as 6;(n) = W - sign(x(n)) - rand (0, |z(n)|), where
sign(-) is the sign function, rand(c, 8) denoted a uniformly
chosen number in the interval (o, ), and W € (0,1) is
a scaling factor. This enables the injection of greater noise
into high-amplitude segments of the signal, where audiotory
masking is more effective. Fig. 1 illustrates this phenomenon.

Auplitude

Time [s]

Fig. 1. Clean audio 2 € RP, and adversarial perturbation §* € RP. The
example x,qy = x+ 6™ is classified as "silence", while corresponds to human
speech.

SNR Constraint: In the image domain, [, norms quantify
the noise magnitude, but in audio, SNR is a more suitable
metric to evaluate and regulate noise levels [22]. The SNR is
defined as SNR (dB) = 10-log,, (E,/Ey), where E,, E,, are
the energies of the clean signal yggnai, and noise signal Ynoise,
respectively. To obtain an adversarial example of fixed SNR,
we normalize the noise before adding it to the clean signal.
In detail, for a given SNR value .S measured in dB, we define

the scaling factor oy, ,(S) = % - 10~5/10, Then, the signal
Z = Ysignal + Q.1 (S) - Unoise has SNR equal to S.

Particle Swarm Optimization algorithm initializes a swarm
of particles, each representing a potential adversarial solution
in the search space. Particles update their velocities and
positions iteratively, influenced by their personal best, and
global best positions. Let P denote the swarm size, and
D the dimensionality of the audio waveform. At time step
t, each particle 1 < ¢ < P has a position z; € RPD,
and a velocity v; € RP. The velocity update is given

by vith = wol + et (et — at) + corbt(gbet — al),
where p?* is the particle’s i best position, g®* is the global

best, w is the inertia weight and c;, co control the influence
of personal and global best positions. The random factors

ritl pith € U(0,1), introduce stochasticity. The position
update is xf“ = x§+vf+l. Algorithm 1 presents the workflow

of PSO in pseudocode.

III. EXPERIMENTAL SETUP
A. Datasets

AudioSet [23] is a large-scale dataset of manually annotated
audio events, comprising 527 distinct classes organized in a
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Algorithm 1 Particle Swarm Optimization

1: Input: Event x € RP, particles P, iterations IV, hyperpa-
rameters w, ¢1, co, scaling factor W, SNR S.

2: Initialize Swarm Best Fitness: SBF' < oo

3: foreachi=1,..., P do

4:  Initialize perturbation 550).

50 Set 20 x4+ 89, 0) + 20, and ptt « ;.

6: if L(z?) < SBF then update SBF <« L(2?), and
gbest — J]?

7: end for

8: Initialize iteration index ¢ < O.
9: while SBF >0ort¢t < N do
10 fori=1,...,P do

1 Update velocity: vi™! < wuf + cyr (p — zt) +
cora(gP™t — ).

12: Perturbation: §/** < ¢ 4 vftt,

13: Position: ! « zt + a1 se+1(S) - St

14: if L(zith) < L(pbe) then upziate peest gttt

15: if L(pt®) < L(g*") then update g + x!™!.

16:  end for
17 t<+t+1,SBF + L(gbe“).
18: end while

19: return Adversarial example g,

hierarchical structure with a maximum depth of 6 levels. We
utilize the validation subset of the dataset!, which consists of
17,927 audio files, each potentially containing multiple audio
events. To evaluate model robustness, we treat the dataset as
a one-class label classification task by grouping the audio
files according to the top-level categories of the dataset’s
ontology. Table I presents these categories and their corre-
sponding class distributions. We observe that some models
can be easily fooled to classify an audio event as there is no
event present. For this reason, we exclude "Silence" from the
"Source-Ambiguous Sounds" category and treat it as a separate
hypercategory.

TABLE I
CLASS DISTRIBUTION IN TOP-LEVEL CATEGORIES OF THE AUDIOSET
VALIDATION SUBSET.

Category Number of Samples
Natural sounds 306

Silence 6

Sounds of things 3,389
Channel, environment and background 240

Animal 990
Source-ambiguous sounds 788

Music 3,266
Human sounds 1,582

Environmental Sound Classification (ESC-50) [24] is a
balanced dataset consisting of 2000 environmental record-
ings, each 5 seconds in duration, spanning 50 distinct audio
event classes. These 50 classes are evenly distributed across

Thttps://www.kaggle.com/datasets/zfturbo/audioset-valid

5 hypercategories: Animals, Exterior/Urban Noises, Natural
Soundscapes & Water Sounds, Interior/Domestic Sounds, and
Human Non-Speech Sounds.

B. Threat Model

We perform untargeted attacks with the goal of causing the
model to misclassify the hypercategory. We filter out all
samples that are misclassified by the model and retain only the
correctly predicted ones. Our experiments operate in a black-
box setting, where the adversary can only query the model
and access the posterior probabilities. We vary the SNR value
S in the set {5, 10, 15, 20, 25,30} dB, aiming to minimize the
loss function L. We evaluate the robustness of three SOTA
transformer-based models trained on Audioset.

Audio Spectrogram Transformer (AST) [16] is a
transformer-based model designed for audio classification
tasks with 88,132,063 trainable parameters. It process audio
signals by first converting them into spectrograms, which
are then divided into overlapping patches. These patches are
projected into 1-dimensional embeddings, forming the input
sequence to a series of stacked transformer blocks.

The Patchout faSt Spectrogram Transformer (PaSST) [17]
extends AST and applies patchout to drop a portion of the
input sequence. This method reduces training time and serves
as a data augmentation, further improving the performance.
This model consists of 86,153,759 parameters.

Bidirectional Encoder representation from Audio Trans-
formers (BEATS) [18] is an iterative audio pre-training frame-
work where an acoustic tokenizer and an audio self-supervised
model are optimized by iterations. This is the first work in the
audio domain that introduces an audio pretraining framework
with discrete label prediction loss instead of reconstruction
loss. BEATSs achieves the highest performance of the three
models containing 90,717,055 trainable parameters.

C. Implementation Details

Our implementation is written in Python, utilizing PyTorch as
the deep learning framework. We source the pretrained models
on AudioSet from their official repositories,?,*. We evaluate
the models on the hypercategory-level classification task by
mapping each class label to its corresponding hypercategory.
The adversarial attacks are performed on the subset of samples
that are correctly classified by the model. For the ESC-50
dataset, we employ a 5-fold cross-validation approach. Specif-
ically, we train a multilayer perceptron (MLP) classifier, with
two hidden layers of size 512 and 256, using each of the three
models as feature extractors excluding their classifier head.
We evaluate each model on the held-out fold and performed
adversarial attacks on the correctly classified samples within
that fold. This process is repeated for all folds. For PSO we
use a swarm of size P = 25 and a total of iterations N = 20.
The inertia weight w is set to 0.9. The influence parameters

Zhttps://github.com/YuanGongND/ast
3https://github.com/kkoutini/PaSST
“https://github.com/microsoft/unilm/tree/master/beats
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c1,co are equal to 1.2, and the initialization factor W is set
to 0.5.

IV. RESULTS AND DISCUSSION
A. Performance

The results in Table II demonstrate the performance of BEATS,
PaSST, and AST on the AudioSet and ESC-50 datasets for
the hypercategory classification task. On ESC-50, the mean
average accuracy and mean F1 across the 5 folds are reported.
As evident, BEATSs consistently outperforms the other models,
achieving the highest accuracy and F1 scores on both datasets.
These results align with existing literature, where BEATS is
reported as the best-performing model among the three for
sound event detection tasks. Furthermore, on ESC-50, BEAT's
achieves 97% accuracy without hyperparameter tuning, which
is consistent with the result of 98.1% reported in the original
paper [18]. Finally, AST ranks second, surpassing PaSST on
both datasets.

TABLE II
MODEL PERFORMANCE ON AUDIOSET AND ESC-50.

Model AudioSet ESC-50
Accuracy F1 Accuracy F1
BEATSs 0.78 0.56 0.97 0.98
PaSST 0.70 0.51 0.94 0.94
AST 0.77 0.53 0.96 0.96

B. Adversarial Robustness

Fig. 2 illustrates the robustness of the three models against
adversarial attacks at varying SNR levels. The success rate, de-
fined as the ratio of successful attacks, serves as the evaluation
metric; higher success rates indicate lower robustness. BEAT's
is the least robust model across both datasets, with success
rates significantly higher than those of PaSST and AST. For
low SNRs (< 15 dB) the success rate remains above 80%
for AudioSet, and 40% ESC-50. At 20 SNR dB, where the
perturbation is barely noticeable, the success rate is 68.03%
for AudioSet, and 31.72% for ESC-50. A notable observation
is the robustness gap for BEAT's across the two datasets, where
the success rates on AudioSet are significantly higher than
those on ESC-50. By inspecting the distribution of adversarial
examples across the hypercategories, we observe that most
adversarial examples are classified as "Silence" by BEATS.
This behavior may be attributed to the self-supervised training
approach used for BEATSs, which differs from the supervised
training of PaSST and AST. During self-supervised training,
BEATS learns acoustic tokenizers through a distillation process
from a teacher model. If an audio event is not present during
this process, the acoustic tokenizers may not be linked to that
event, making it harder for the classifiers in the downstream
procedure to learn a convex decision boundary for the event.
In contrast, both PaSST and AST exhibit similar robustness
across the two datasets. A minor difference is observed in the
ESC-50 dataset, where PaSST appears slightly more robust
than AST. The only distinction between these two models is

that PaSST employs patchout during training, which acts as
a regularization mechanism. This difference may help prevent
overfitting to a specific data distribution, potentially leading to
improved adversarial robustness.

AudioSet Dataset

—e— BEATs
PaSST
—&- AST

Success Rate (%)
3

ESC-50 Dataset

—e— BEATs
PaSST
80 —k- AST

Success Rate (%)

SNR (dB)

Fig. 2. The attacking success rate for the three models on AudioSet and
ESC-50 for SNRs in {5, 10, 15,20,25,30} dB. Success rate is inversely
propotional to robustness.

Decision Boundaries: BEATs

Classes

Decision Boundaries: PaSST

Fig. 3. The decision boundaries of the embeddings projected in 2D with
PCA.

C. Further Discussion

As demonstrated in the previous results, PaSST exhibits the
highest robustness against adversarial attacks. This finding
contrasts with the results in Table II, where PaSST achieves the
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lowest classification performance on clean (non-adversarial)
data. This discrepancy suggests that robustness against adver-
sarial attacks may be uncorrelated with model performance.
We attribute this observation to the fact that as a model’s
performance on clean data increases, so does its tendency to
overfit to a specific data distribution. Consequently, even small
perturbations to the input may lead to incorrect predictions.
Fig. 3 illustrates the BEATs and PaSST decision boundaries
on ESC-50, with the embeddings projected in 2D via PCA.
We visualize adversarial regions by attacking all samples and
projecting the embeddings of the successful ones. We observe
that adversarial examples occupy regions in the embedding
space that are distinct from those explored during the training
phase. These adversarial regions are clearly separated from the
regions corresponding to the original classes, indicating that
few, if any, embeddings of the original classes are mapped
to these areas. This separation can be explained by the fact
that deep neural networks, while theoretically continuous
functions, behave like discrete functions in practice due to
the inherently discrete nature of their training process. As
a result, small perturbations in the input space can lead to
representations that are significantly distant from each other
in the embedding space.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we assessed the robustness of three SOTA
transformers for sound classification against black-box adver-
sarial attacks. We proposed a method to generate attacks with
a fixed SNR, allowing robustness evaluation across varying
imperceptibility levels. Our experiments show that while deep
neural networks achieve exceptional performance, they remain
highly vulnerable to adversarial examples, posing significant
security risks for real-world deployment. It is still unclear why
these models are susceptible to such inputs and whether there
is a way to suppress these vulnerabilities. For future research,
we aim to focus on answering these questions and, ultimately,
develop methods to enhance the robustness of these models.
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