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Abstract—Acoustic detection of submerged vessels or sub-
marines by small low-cost devices arranged in an internet of
underwater things (IoUT) offers distributed sensing with easy
deployment from moorings, vessels or air. In this paper, we pro-
pose a probabilistic approach to detect the underwater radiated
noise (URN) of submerged scooters. Our method builds upon
expected distortions in the radiated noise of the scooter that leads
to a complex harmonic pattern. A stability test for harmonics
then verifies detection. Results from two sea experiments with
two different scooters show favorable tradeoff between the false
alarm rate and the detection rate that improves as the vehicle’s
speed increases.

Index Terms—Underwater radiated noise, submerged Scooter,
Clustering, Harmonic detection

I. INTRODUCTION

Acoustic detection of electric unmanned underwater ve-
hicles (UUVs) or Diver Propulsion Vehicles (DPVs) is a
challenging task due to the weak acoustic signature of the
acoustic radiated noise. The underwater radiated noise (URN)
from such vessels may include high power impulsive transients
generated during ignition [1] as well as cavitation noise caused
by the collapse of vapor bubbles near the propeller. Methods
for distinguishing between vessel’s and ambient noise assume
that the ambient noise is diffuse, while its anthropogenic
component is directional and can therefore be extracted by
array processing [2]–[4]. In this paper, we target the security
field of threat detection. In particular, we focus on the defense
of critical marine infrastructures such as oil & gas rigs and
underwater cables by detecting divers with DPVs, commonly
known as scooters.

Scooters are typically used by divers as a way of extending
their operations range and speed and reducing fatigue. There
are scooters for different applications including recreational,
scientific and military. Scooters are propelled by electric
thrusters and are controlled and maneuvered by a scuba diver
that uses the scooter as a mean to travel fast with minimum
effort. A picture of a diver holding a scooter from our sea
experiment is shown in Figure 1. For a recent review on
DPVs/scooters, we refer to [5].
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As scooter are small devices and are often used by divers
close to the sea boundaries, they are difficult to detect by active
sonar, e.g., transmitting prob acoustic signals and analyzing
the received reflections. This is because, near the surface, the
signal to clutter ratio of the reflection pattern is extremely
weak [6]. Alternatively, passive acoustic detection holds the
potential to recognize the noise emitted by the scooters. In
particular, to identify stable periodic components in the signal
in the form of narrowband tonal lines, which is different than
the Gaussian-like distribution of the ambient noise. By our
measurements, these narrowband components in the signal
also include a complex harmonic pattern due to misalignment
in the scooter’s thruster. Tailored to these observations, our so-
lution for passive detection of scooter’s radiated noise includes
cyclostationary analysis for harmonic detection followed by a
stability test. To the best of our knowledge, while scooters are
fast adopted by scuba divers due to their ease of operation and
low cost, this is the first specific solution to detect the noise
radiated by these vehicles.

A. Related work

The literature is rich regarding the passive detection of ships
URN. Typical approaches use use power spectrum analysis
methods over the DEMON representation of the received sig-
nal [7], [8]. Other methods combine cyclostationary analysis
and principal components analysis [9], or search for stability
in the noise pattern [10]. An overview of tracking approaches
for URN detection and ways to analyze the narrowband noise
components to characterize ships is provided in [11]. A few
approaches present an infrastructure and/or algorithms that
detects both DPVs, UUVs and ships but do not specifically
address DPVs. For instance, in [12], a combination of ac-
tive and passive sonar is suggested in the framework of an
underwater sensor network. Likewise, the Stevens Passive
Acoustic System for underwater surveillance [13] included
4 hydrophones statically deployed to detect UUVs, DPVs,
swimmers and divers. This system applies cross-correlation
for a delayed version of the signal with an operator manually
choosing the frequency band of interest.

One of the main issues with the detection of small UUVs or
DPVs is that they are much quieter than ships and thus harder
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Fig. 1. Picture from the data collection of a scuba diver and a scooter.

to listen/detect. An acoustic scattering characterization pro-
vided by [14] investigates the stealth capabilities of DPVs. Due
to this aspect, some authors perform active detection [15], [16]
and others use arrays [3], [4], [17] or utilize vector sensors [18]
as means for directional reception when performing passive
detection. To get directionality, the work described in [17] uses
a tetrahedral array. The work in [19] uses two hydrophones and
for detection of Remotely Operated Vehicle (ROV) using si-
multaneous particle image velocimetry (PIV) measurements to
identify the components of the overall observed spectrum. An
hybrid system in [20] combines both passive and active sonar
is used to first passively detect an UUV by finding periodic
patterns in the cross-correlation output of an hydrophone array,
followed by vehicle’s localization and tracking using an active
sonar. However, no solution is offered for the detection of
DPVs or UUVs using the realistic setup of a single hydrophone
system.

The remainder of the paper is organized as follows. Sec-
tion II presents our detection methodology. Section III shows
results based on recordings from sea trials. Finally, Section IV
concludes the paper.

II. METHODOLOGY

A. Data collection

To characterize the noise of the scooter, we have performed
a data collection experiment. The experiment included an
OceanSonic IcListen acoustic recording unit (256 kHz sam-
pling frequency at 3B per sample) attached to a scuba diver
that used a Secraft GO! scooter. We tested two scooters of the
same type, each at a different diving session. The two tests
took place at Dec. 2024 in Eilat, the Red Sea at a depth of
20 m. The divers operated the scooters continuously at three
speed values: 0.5 knot, 1 knot and 2 knots. An underwater
camera was pointed to the scooter’s screen showing the current
speed for offline analysis. For false alarm estimation, the
recorder was placed in the water for ambient noise recording
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(a) Full spectrum.
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(b) zoom-in.

Fig. 2. Spectrum of the recorded scooter’s noise. Speed 1 knot.

for two hours between the two diving sessions. A picture from
this experiment is shown in Fig. 1.

Data was collected during two 40 min dives. As pre-
processing, the noise from the divers’ breathing system was
identified and removed from the data. This was done by
an energy detector tuned to a wideband signal from DC to
100 kHz, assuming the scooter noise is narrowband. A second
pre-processing included identifying the scooter’s operation
times by manually observing the diver’s camera video footage.
This yielded acoustic segments arranged by the scooter’s
speed.

B. Characterization of Scooter Noise

A spectrum of the scooter’s recorded noise for speed of
1 knot is given in Fig. 2. We observe a set of narrowband
signals with harmonics starting at 15.6 kHz with a maximum
of 10 dB reduction until 97 kHz. The similarities between the
intensity of the fundamental frequency and the harmonics may
reflect a defect in the rotating system. Signal-to-noise ratio is
above 20 dB, but we recall that this level is received when
the recorder is attached to the diver, roughly 1 m from the
scooter’s thruster. We report that this noise is continuous with
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(a) Cepstrum of entire signal.
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(b) Cepstrum of band 31 kHz to 34 kHz.

Fig. 3. Cepstrum response for the signal’s spectrum in Fig. 2a.

almost no intensity reduction. As expected, the basic harmonic
frequency changes with the scooter’s speed. The high carrier
frequency makes the noise negligible to the diver’s ear, but
well observed by a recorder with a high sampling frequency.

A zoom-in for the first harmonic is given in Fig. 2b. We
observe a complex structure of narrowband signals that reflect
the scooter’s thruster acoustic signature. Together with the ob-
servable harmonics, this structure may serve as a characteristic
feature for the detector.

C. Detector Design

Our detection pipeline includes three steps: 1) cyclostation-
ary analysis to find harmonies in the signal, 2) a search for
harmonic stability by comparing the detected harmonies over
time, and 3) detection verification by identifying multipeaks
in each harmonic band.

1) Harmony Detection: Expecting a low SNR for the
received signal, the harmonics in the signal may be hard
to detect directly by e.g., spectrum analysis. Instead, relying
on the harmony consistent spacing in the spectral domain,
we perform harmony identification in the cepstral domain.
Cepstrum analysis is the inverse Fourier transform of the

logarithm of the signal spectrum. The fundamental frequency
in the cepstral domain would correspond to the inverse of the
harmonic frequency difference. The cepstrum response for the
signal’s spectrum in Fig. 2a is shown in Fig. 3a. Several peaks
are observed, which reflects on the complex spectrum of the
signal. To identify possible harmonies in the buffer, we match
between cepstrum peaks and peaks identified in the power
spectral density (PSD) of the signal.

Denote f = f1, . . . , fN as the series of frequencies found
as dominant peaks in the PSD above a certain carrier fre-
quency fmin. Also denote c = c1, . . . , cM as the series of
quefrency found as dominant peaks in the cepstral analysis.
A harmonic association h(ci), ci ∈ c would include pairs
(fn, fm), fn, fm ∈ f for which ci−δ < |fn−fm| < ci+δ and
δ is a parameter set by the sampling frequency to compensate
on the PSD quantization error. To obtain ci and, by which
the harmonic association, we solve the following optimization
problem

h =argmax
ci

||h(ci)||, (1a)

s.t. ci − δ < |fn − fm| < ci + δ, ∀(fn, fm) ∈ h(ci)
(1b)

(fn, fm) ⊥ (fk, fl), (fn, fm), (fk, fl) ∈ h(ci) , (1c)

to search for the largest set of harmonic assignment, where
|| · || stems for the rank of a set.

2) Testing Harmonic Stability: The second processing step
search for stability among all harmonic components identified
by the cepstrum analysis. To this end, we divide the received
signal into short time buffers of T s and, in each, find the
dominant harmonic components. Stability is tested over the
identified harmonies. This is performed as a clustering problem
to find classes of condensed values. Using a clustering solution
allows a flexibility degree and eliminates outliers.

Consider a division into N buffers. Let set H includes the
individual frequencies in the obtained sets h in all time buffers,
where L = ||H||. Determine K, the maximum number of
clusters, as the number of identified frequencies in the largest
set h. Let sk be a binary vector of degree L for which a ’1’ in
element i indicates that the ith frequency is included in cluster
k. We model the stability of the whole ensemble of K clusters
as:

K∑
k=1

sTkWsk −
K∑

k=1

sTkDsk , (2)

where D is a diagonal matrix whose (i, i) entry di,i is the
sum of similarities of the ith frequency to all other identified
frequencies,

di,i =

N∑
j=1

wi,j , (3)

where wi,j is the Euclidean distance between frequencies i
and j arranged in matrix W. In (2), the first term quantifies
distances within the cluster while the second term reduces the
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probability to obtain large clusters. We choose this formaliza-
tion to direct the solution to form high rank clusters only for
true assigned harmonies.

The solution for the clustering problem is found by solving
the optimization problem

argmax
sk

K∑
k=1

sTk (W −D) sk,

s.t. sk ⊥ sl,∀k ̸= l .

(4)

The problem in (4) is the same form as the minimal cut
problem [21]. For matrix S containing vectors sk as columns,
the problem can be effectively solved by

argmin
C∈{0,1}N×K

Tr(CTD−WC),

s.t. CTC = I ,
(5)

where Tr(·) is the matrix trace and I is the unity matrix.
3) Detection Verification: The final step in our detection

scheme is a search for a complex harmonic response. Such a
pattern is evident in Fig. 3b. This is performed by determining
is a sufficient number of stable harmonies have been detected.
Let ρk be the number of frequencies in a cluster k, such that

ρk =

K∑
k=1

sk .

The harmonic detection is determined valid if there is at least
K/2 clusters for which ρk > Th. Note that the stability
threshold, Th, is the only threshold in our scheme. Arguably,
this contributes to the robustness of the detector as scooters
may produce various harmonic patterns.

III. RESULTS

Our results were obtained separately for the two recorded
scooters recorded. For analysis, we considered time windows
of 10 s during which the speed of the scooter was expected
to be stable. Each time window was divided into T = 1 s
long buffers for stability testing. The detection was performed
separately for each time window, such that for each dive of
40 min the number of detection attempts with scooter’s noise
was 240. To test a more realistic scenario, ambient noise
recorded before the operation of the scooter was synthetically
added to the signal acquired from the recorder mounted on the
diver’s tank to yield an SNR of 20 dB. False alarm calculation
was performed for the 2 hour noise collection period in similar
time windows to yield 720 detection attempts with no scooter’s
noise present. The minimum considered frequency for the
detection was fmin = 10 kHz. The stability threshold Th
was used as a parameter to obtain the receiver operating
characteristics (ROC). That is, for a choice of Th we receive
a pair of detection rate (DR) and false alarm rate (FAR).

The ROC for the three speed values tested during the
recording trials are presented in Fig. 4a and in Fig. 4a for
scooter A and scooter B, respectively, and recall the SNR was
set for 20 dB. We observe an improvement in detection as
the speed increases. For example, for Scooter A and a speed
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(a) Scooter A.
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Fig. 4. ROC curves for different scooter speed as recorded during the
experiment. SNR=20 dB.

of 1 m/s a FAR of 10−2 was obtained for a DR of roughly
72%, while for the same scooter at a speed of 2 m/s a similar
FAR is obtained for a DR of 80%. This is because of increased
harmonics resulting from instabilities of the scooter’s thrusters
that increases with the speed. Comparing the results for
the two scooters, no significant differences are observed in
the ROC. Arguably, this demonstrates the robustness of our
detector.

Next, we explore the ROC performance for different SNR
values for a scooter’s speed of 1 m/s. Average results for
the two scooters are presented in Fig. 5. We observe stable
detection performance up to an SNR of 5 dB. Considering the
initial SNR of 30 dB as recorded on the diver carrying the
scooter (see Fig. 2a), a decrease of 25 dB in the SNR would
translate to detection from a distance of more than 100 m.

IV. CONCLUSION

In this paper, we derived a detection scheme aimed to
identify the radiated noise of a submerged scooter. The method
assumes a stable harmonic pattern in the radiated signal and
includes a series of harmony detection, stability testing and
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Fig. 5. ROC performance as a function of SNR.

search for a complex spectral pattern for detection verifica-
tion. Results from recordings of two scooters demonstrated
robustness in the detection in terms of the scooter’s speed
and up to an SNR of 5 dB, an similar performance when
tested on two different scooters but of the same make. Future
work will explore the effect of different scooter types, various
environmental conditions as well as realtime detection test.

REFERENCES

[1] F. Jensen, L. Bejder, M. Wahlberg, N. A. de Soto, M. Johnson, and
P. Madsen, “Vessel noise effects on delphinid communication,” Marine
Ecology Progress Series, vol. 395, pp. 161–175, 12 2009.

[2] C. Zhu, S. G. Seri, H. Mohebbi-Kalkhoran, and P. Ratilal, “Long-range
automatic detection, acoustic signature characterization and bearing-time
estimation of multiple ships with coherent hydrophone array,” Remote
Sensing, vol. 12, p. 3731, 11 2020.

[3] D. Nie, Z. Sun, G. Qiao, S. Liu, and Y. Yin, “Kite-type passive acoustic
detection system for underwater small targets,” in 2014 Oceans - St.
John’s. IEEE, 9 2014, pp. 1–5.

[4] K. R. Kita, S. Randeni, D. DiBiaso, and H. Schmidt, “Passive acoustic
tracking of an unmanned underwater vehicle using bearing-doppler-
speed measurements,” The Journal of the Acoustical Society of America,
vol. 151, pp. 1311–1324, 2 2022.

[5] H. Qin, Z. Li, S. Xu, X. Liu, and X. Cao, “Review of diver propulsion
vehicle: A review,” Physics of Fluids, vol. 36, 10 2024.

[6] R. Diamant, D. Kipnis, E. Bigal, A. Scheinin, D. Tchernov, and
A. Pinchasi, “An active acoustic track-before-detect approach for finding
underwater mobile targets,” IEEE Journal of Selected Topics in Signal
Processing, vol. 13, no. 1, pp. 104–119, 2019.

[7] Q. Xie, C. Chi, S. Jin, G. Wang, Y. Li, and H. Huang, “Underwater tone
detection with robust coherently-averaged power processor,” Journal of
Marine Science and Engineering, vol. 10, p. 1505, 10 2022.

[8] W. Guo, S. Piao, J. Guo, Y. Lei, and K. Iqbal, “Passive detection of
ship-radiated acoustic signal using coherent integration of cross-power
spectrum with doppler and time delay compensations,” Sensors, vol. 20,
p. 1767, 3 2020.

[9] Y. Song, J. Liu, L. Cao, N. Chu, and D. Wu, “Robust passive underwater
acoustic detection method for propeller,” Applied Acoustics, vol. 148, pp.
151–161, 5 2019.

[10] T. Alexandri and R. Diamant, “Detection and characterization of ship
underwater radiated narrowband noise,” Computer Networks, vol. 248,
p. 110480, 2024.

[11] A. Pollara, A. Sutin, and H. Salloum, “Passive acoustic methods of small
boat detection, tracking and classification,” in 2017 IEEE International
Symposium on Technologies for Homeland Security (HST). IEEE, 4
2017, pp. 1–6.

[12] N. Masaki, S. Hiroshi, M. Jun, M. Kenji, K. Minoru,
and Y. Masahiro, “Special issue on solving social issues
through business activities establish a safe and secure society
underwater surveillance system to counteract associated underwater
threats,” NEC Technical Journal, vol. 8, 9 2013. [Online]. Available:
https://www.nec.com/en/global/techrep/journal/recommend year/2013/10.html

[13] A. Sutin, B. Bunin, A. Sedunov, N. Sedunov, L. Fillinger, M. Tsionskiy,
and M. Bruno, “Stevens passive acoustic system for underwater surveil-
lance,” in 2010 International WaterSide Security Conference. IEEE, 11
2010, pp. 1–6.

[14] J. Li, J. Fan, and B. Li, “Acoustic scattering characteristics of a diver
propulsion vehicle,” Journal of Unmanned Undersea Systems, vol. 30,
pp. 733–739, 12 2022.

[15] B. Lei, Z. He, Y. Yang, C. Sun, and C. He, “Experimental demonstration
of forward scattering barrier for auv intruder,” Applied Acoustics, vol.
190, p. 108635, 3 2022.

[16] T. C. Yang, “Acoustic dopplergram for intruder defense,” in OCEANS
2007. IEEE, 2007, pp. 1–5.

[17] K. E. Railey, “Demonstration of passive acoustic detection and tracking
of unmanned underwater vehicles,” Ph.D. dissertation, 2018.

[18] D. S. Terracciano, R. Costanzi, V. Manzari, M. Stifani, and A. Caiti,
“Passive bearing estimation using a 2-d acoustic vector sensor mounted
on a hybrid autonomous underwater vehicle,” IEEE Journal of Oceanic
Engineering, vol. 47, pp. 799–814, 7 2022.

[19] M. Cai and B. Bingham, “Passive acoustic detection of a small remotely
operated vehicle,” in OCEANS 2011 IEEE - Spain. IEEE, 6 2011, pp.
1–7.

[20] G. Sumithra, N. Ajay, N. Neeraja, and K. Adityaraj, “Hybrid acoustic
system for underwater target detection and tracking,” International
Journal of Applied and Computational Mathematics, vol. 9, p. 149, 12
2023.

[21] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

145


