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Abstract—Audio-based environmental monitoring is gaining
ever-increasing interest in the last decades facilitating a wide
range of applications. An emerging task concerns the automatic
estimation of rainfall intensity based on the respective acoustic
activity. This work proposes an audio processing and modelling
pipeline tailored to the requirements of the specific task. More
precisely, we a) preprocessed the audio signals through filtering
prior to feature extraction, b) integrated meteorological data
as auxiliary features, c) explored different FFT window lengths
considering the stationary characteristics of the available data,
and d) constructed an ensemble model by stacking multiple
transformer-based regressors. Importantly, during this analysis,
we employed a publicly available dataset, i.e. SARID, adopting a
standardized experimental protocol enabling reliable comparison
of different approaches. Finally, the optimised model ensemble
achieved a noticeable increase over the state of the art. Last
but not least, the implementation of the described experimental
pipeline is available at https://www.kaggle.com/code/imemine/
ensemble-model-for-rain-intensity-estimation.

Index Terms—Environmental monitoring, rainfall estimation,
audio pattern recognition, audio surveillance, transformers, en-
semble modeling

I. INTRODUCTION

Audio-based environmental monitoring may offer efficient
solutions in contexts with heterogeneous requirements and
objectives, such as assessing ecosystems, urban areas, and
wildlife habitats, to name but a few [1]-[5]. Audio signal
processing and pattern recognition technologies can address
a wide gamut of applications ranging from detection of
environmental changes to tracking urban noise levels, while
allowing for non-invasive data collection. A relatively recent
application concerns rainfall monitoring, which is a critical
task in environmental sciences, playing a vital role in water
resource management, agriculture, flood forecasting and cli-
mate studies [6]. Accurate and reliable measurement of rainfall
is essential for understanding precipitation patterns and their
broader environmental and societal impacts [7], [8].

Traditionally, rainfall intensity and accumulation are mea-
sured using rain gauges—devices that collect and quantify
precipitation [9]. Unfortunately, due to their construction,
which involves a funnel for collecting the raindrops, rain
gauges face several technical challenges, particularly in remote
or inaccessible locations. Regular maintenance is necessary
to ensure their accuracy as debris, insects or sediment can
clog the instruments, rendering them ineffective or leading to
inaccurate measurements. This maintenance requirement not
only increases operational costs but also limits the scalability
of rain gauge networks in regions where infrastructure and
resources are constrained.
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Given these limitations, alternative methods for rainfall
monitoring that a) are cost-effective, b) necessitate low-
maintenance, and c) can be suitably deployed in remote
areas have being explored. Among those, the use of indirect
approaches, such as analyzing the generated audio signals,
have been investigated. Current research in this area can be
categorized into three three main areas of focus.

The first line focuses on underwater rainfall sensing using
audio. This approach leverages underwater acoustic signals
to estimate rainfall intensity and has been applied in real-
world scenarios [10], [11]. By utilizing existing underwater
devices, this method provides an effective way to measure
rainfall without requiring additional infrastructure in marine
environments.

The second line of research involves the development of
custom devices designed to infer rainfall intensity by capturing
the sound of raindrops impacting a predefined surface. These
devices utilize plates of specific materials and dimensions to
create a controlled environment for sound detection, ensur-
ing consistency and measurement reliability [12], [13]. This
approach could extend the existing strategy of measuring the
drop size distribution of atmospheric precipitation, a method
traditionally employed using an instrument known as a laser
disdrometer [14]. Disdrometers analyze the size, shape, and
velocity of raindrops to provide detailed information about
rainfall characteristics.

The third line of research, which is the focus of the
present article, explores the use of machine learning techniques
for rainfall detection based on surveillance audio [15]. This
approach aims at exploiting the widespread network of surveil-
lance cameras equipped with audio recording capabilities to
enable a cost-effective and dense monitoring network for both
urban and remote areas. By utilizing existing infrastructure,
this method has the potential to significantly expand rainfall
monitoring coverage without the need for additional hardware
installations. Existing solutions have explored several feature
sets (Chroma, contrast, tonnetz, Mel Frequency Cepstral Co-
effients, etc.) along with traditional machine learning and deep
learning architectures [6], [16]-[18].

A major challenge in this domain is the lack of a consistent
dataset of audio recordings paired with corresponding rain-
fall measurements. To the best of our knowledge, the only
publicly available dataset is the Surveillance-Audio-Rainfall-
Intensity-Dataset (SARID) [18]. SARID provides annotated
audio recordings taken from six real-world rainfall events
occurred at the Nanjing Normal University in China. The
audio recordings have been split into chunks of 4 seconds
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Fig. 1. The proposed experimental pipeline for optimizing the audio signal processing component and incorporating meteorological parameters.
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Fig. 2. The obtained results for different window sizes.

and subdivided homogeneously into training and testing sets.

This work advances the existing findings by optimizing the
audio processing front-end combined with a suitably-trained
ensemble of transformer models. Interestingly, this process
provided valuable insights for the problem at hand. At the
same time, the incorporation of meteorological parameters
is also explored. Importantly, the proposed model ensemble
outperforms the state of the art, while adopting a standardized
experimental protocol.

This rest of this article is organised as follows: section II
formulates the rainfall intensity estimation problem. Section III
details and experimental construction of the proposed ensem-
ble model including the optimization of the audio processing
stage. Finally, in section IV we draw our conclusions and
present fruitful directions for future research.

II. PROBLEM FORMULATION

Let us consider a rainfall monitoring framework encompass-
ing an acoustic sensor capturing the audiostream y; : N — R
and environmental sensors capturing temperature, pressure,
humidity and wind speed 6y, p;, hy,w; : N — R over time
t. The specific timeseries are associated with rainfall intensity
measurements denoted as r; : N — R. The overall aim is to
create a model M accurately predicting r; using the available
measurements 0y, py, hy, wy , i.e. 1y = M(0y, pr, by, wy).

III. EXPERIMENTAL CONSTRUCTION OF THE PROPOSED
ENSEMBLE MODEL

The conducted work can be divided into three main phases,
each one corresponding to three different strategies that we
adopted to optimize the proposed regression model.

The first part focused on enhancing the audio data before
feature extraction by applying low-pass filters at various cut-
off frequencies (4000 Hz, 3000 Hz, 2000 Hz, and 1000
Hz) and by exploring different window lengths (and FFT
resolutions).

The second part of the work aimed at complementing the
audio-based models by incorporating additional meteorolog-
ical parameters (humidity, pressure, temperature, and wind
speed) taken from the SARID dataset. Such parameters were
added to the model after the encoding phase and before the
linear layer during training (see Fig. 1).

For these two parts, we used the same Transformer archi-
tecture proposed in the reference paper, which consists of four
stacked encoders (with 4 attention heads and a feed-forward
size of 512), followed by a Global Average Pooling layer and
two fully connected layers.

During the last phase, we constructed an ensemble stack-
ing model elaborating the outputs of three transformer-based
models, each one trained with a suitably-optimized feature set,
and a linear regressor.

The above-mentioned phases are explained in the following
subsections. It should be mentioned that during all experiments
were conducted following the standardized experimental pro-
tocol suggested in [18]. Both feature extraction and modelling
stages were optimized on a validation set, which is part of
the training set, while the presented figures of merit are
computed on the test set. Aiming at minimizing the need
for domain knowledge, we employed the short-time Fourier
transform (STFT) spectrogram, log-Mel spectrogram (MEL),
and the Mel-Frequencies Cepstral Coefficients (MFCC) which
offer complementary views of the audio structure and dif-
ferent attention levels [19], [20]. The results presented in
the following sections are, for simplicity, generally reported
using the R? score as the sole evaluation metric. This choice
aligns with the approach adopted in the reference paper, where
performance figures were also based on this metric. Moreover,
despite the challenges posed by an asymmetric distribution
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Fig. 3. The obtained results during the low-pass filtering phase.

(see section IV), the R? score is used here solely to compare
the performance of different models as the input features vary.
However, to better highlight the findings in III-D where
a direct comparison with the baseline from the reference
paper is made—we also report MAE and RMSE values, in
order to provide a more comprehensive performance overview.
The implementation of the proposed experimental pipeline
is publicly available at https://www.kaggle.com/code/imemine/
ensemble-model-for-rain-intensity-estimation.

A. Low-pass filtering

The rationale behind the filtering strategy comes from sub-
jective auditory evaluations that suggested that the relevant part
of rainfall sounds lies in the lower part of the spectrum. The
goal was to reduce potential noise and focus on the frequency
range most relevant for rainfall intensity detection. Audio
signals were filtered at various cutoff frequencies, specifically
1000Hz, 2000Hz, 3000Hz, and 4000Hz, before undergoing
feature extraction.

The results, shown in Fig. 3, reveal that applying a low-pass
filter with a cut-off frequency around 2000-3000Hz provided
a slight improvement in model performance compared to the
unfiltered baseline. It should be noted that the model based on
the STFT feature, unlike the rest, showed a consistent decrease
in performance when the filter was applied that became worst
when the filter cut-off was 1000Hz. However, reducing the
cutoff frequency further to 1000Hz or below led to a noticeable
decline in performance. This outcome shows that filtering out
higher frequencies can be useful up to a certain extent since it
may remove noise. At the same time, fine-tuning the filtering
phase is needed to avoid losing useful information.

Overall, the results suggest that the information crucial for
rainfall estimation is primarily concentrated below 2000 Hz,
while the frequency components above this range appear not
to introduce significant noise that would negatively impact
detection accuracy. Despite the lack of significant improve-
ment on the regression task, these findings could be exploited
to effectively reduce the size of the data and the bandwidth
required for real-time rainfall detection and estimation in real-
world scenarios. By focusing on the critical frequency range,
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Fig. 4. STFT averages of samples representing various rainfall intensities.

it may be possible to optimize the system for deployment in
bandwidth-constrained environments without sacrificing accu-
racy. This also implies that a full-range microphone is not
strictly necessary to collect the audio data.

B. Widening the window size

During the specific phase, We explored different window
sizes for the FFT, guided by the idea that rainfall sounds are
largely stationary and spread over a broader temporal window.
Enlarging the window size naturally allows for greater fre-
quency resolution. The respective results are shown in Fig. 2.
There, we observe a considerable performance improvement
as regards to the model trained with the MFCCs when using
a window size of 4096 samples. However, increasing further
the window size did not lead to additional improvements.

During this phase, we divided the samples into 6 bins
(each containing L’ samples) according to the rainfall in-
tensity range and we calculated the magnitude average A
of the STFTs for f{ame m and frequency k as follows:
Ab(m,k) = & S0, |[STFTi(m,k)|. A visual analysis of
the spectrum reveals that it is indeed highly stationary and
concentrated around a well-defined central frequency (Fig. 4).
Additionally, the spectrum exhibits a pattern that appears to
vary in direct proportion to the intensity of the rainfall. In
samples with light rain, the spectrum is more distributed
across frequencies, whereas in samples with heavy rain, it
becomes more concentrated within the main frequency range.
This characteristic can therefore be considered the primary cue
utilized by the regression algorithm and can be used to explain
the functioning of the presented system. It is important to note
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Fig. 5. Results obtained when incorporating meteorogical parameters during
model training.

that the STFT is here normalized before plotting, meaning that
the observed variations in frequency distribution could also be
accompanied by changes in the overall energy of the signal.

C. Incorporating Meteorological Parameters

The third experimental phase focuses on enhancing the
constructed models by incorporating additional features al-
ready present in the SARID dataset but not utilized during
the original training process. These features include generic
meteorological data such as humidity, pressure, temperature,
and wind speed, which could potentially provide complemen-
tary information to the audio-based rainfall intensity detection.

The meteorological data were first normalized (min-max)
and then added to the linear vector resulting from the pooling
phase as shown in Fig. 1. As such, the linear dense layers will
integrate both the audio-derived and meteorological features
to make their predictions. This strategy follows the state
of the art of CNN-based modelling, where the metadata,
when needed, are added after the convolution phase [21].
Despite the theoretical advantages of including these additional
parameters, the results did not show a significant improvement
in performance (see Fig. 5). We argue that further exploration
into how auxiliary features can be effectively integrated into
such audio-based regression models is needed.

D. Stacking ensemble method

The next phase of this work involved combining the results
obtained from the three models into an ensemble model using
a stacking approach. To this end, we build a synergistic
approach using a linear regressor the inputs of which are
the best-performing transformer models trained on the three
considered feature sets, i.e. MFCC, Mel, and STFT. The
choice of a stacking approach was driven by the need to
combine models with similar architectures but trained on
different features. Additionally, this choice was influenced by
the performance of these models, which varied considerably
depending on the employed features. More in detail, MFCCs
consistently achieved higher performance compared to the

TABLE I
COMPARISON OF THE BEST-PERFORMING MODELS AND THE STATE OF THE
ART. THE BEST FIGURES OR MERIT ARE EMBOLDENED.

[ Model [ R? | MAE (mm/h) [ RMSE (mm/h) |
[18] 0.765 0.563 0.88
Transformer with MEL 0.674 0.645 1.034
Transformer with STFT 0.691 0.633 1.007
Transformer with MFCC | 0.777 0.538 0.855
Stacking ensemble 0.787 0.52 0.837

others in most rainfall intensities. However, we observed that
the remaining feature sets may perform more accurately in
cases where MFCCs underperform, thereby improving the
ensemble model’s prediction.

As such, we combined the predictions of the three models
via a linear regression model, which surpassed all independent
models with respect to all figures of merit (see Table. I).
Importantly, the constructed ensemble outperforms the state of
the art [18]. This result demonstrates that an ensemble model
can enhance prediction bias, particularly in cases where the
rainfall intensity is high. Despite this improvement, in Fig. 6
we see that the errors made by the ensemble are considerably
higher for high rainfall intensities. This is possibly due to
the imbalances existing in the available dataset favouring low
intensity ranges as discussed in the following section.

IV. CONCLUSIONS AND FUTURE WORK

Motivated by the characteristics of the present problem,
this work investigated multiple strategies to improve rainfall
intensity estimation using audio data from surveillance cam-
eras. Importantly, we employed a publicly available dataset
along with a standardized experimental protocol. Several of
the proposed strategies led to improved performance, while a
visual analysis of the audio spectra helped identify a relevant
aspect affecting the regression task, which could enable an
explicit explanation of the working principle behind the ML
system.

We emphasize SARID’s potential in driving progress in
this area of research as the dataset represents a significant
advancement over previous rainfall audio datasets, which were
substantially smaller, less comprehensive and not publicly
available. However, it also comes with notable limitations:

(a) The first drawback is its highly imbalanced nature, with
the vast majority of samples representing light rain events.
This poses a considerable challenge for regression tasks,
as the model may struggle to generalize effectively
across different rainfall intensities, even when the task
is transformed in a classification problem (as it is usually
done in real-world applications where the rainfall amount
is usually classified as light, moderate or heavy). For
example, ICAO is a well-known standard for aeronautical
meteorological observations that differentiates between
the type of precipitation: drizzle and rain [22].

(b) Another limitation is the absence of samples without
rain. While the dataset is suitable for rain accumulation
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Fig. 6. Ground truth along with predictions and residual errors made by the
ensemble model.

measurement tasks, the lack of ”no-rain” samples may
inhibit the model’s ability to function as a “real-time”
rain detector in practical applications, such as airport
meteorology or urban monitoring for warning.

As such, while SARID provides a critical foundation for
developing audio-based rainfall intensity estimation models,
addressing these dataset limitations - through balancing, aug-
mentation, and inclusion of no-rain samples — is an es-
sential step towards unlocking its full potential and extend
its applicability to real-world scenarios. Including additional
data representing high rainfall intensities might be particularly
beneficial.

Another potentially fruitful research direction might be the
usage of sample-based modelling methods, which may com-
pensate the dataset imbalances up to a certain extent [23]. In
this direction, a hierarchical scheme may be applied, where the
first step is responsible to classify rainfall intensities (possibly
following the ICAO standard [22]), while the estimation is
carried out at a second step, thus simplifying the problem
space. Last but not least, we argue that audio explainability
methods should be considered as they may provide valuable
insights to the specific task [24].

REFERENCES

[1] S. Fan, F. Xiao, S. Qi, Q. Zhu, W. Wang, and J. Guan, “Fine-grained
audio feature representation with pretrained model and graph attention
for traffic flow monitoring,” DCASE2024 Challenge, Tech. Rep., June
2024.

[2] S. Ntalampiras, “Automatic acoustic classification of insect species based
on directed acyclic graphs,” The Journal of the Acoustical Society of
America, vol. 145, no. 6, p. EL541-EL546, Jun. 2019.

[3] D. Stowell, “Computational bioacoustics with deep learning: a review
and roadmap,” PeerJ, vol. 10, p. e13152, Mar. 2022.

[4] B. W. Schuller, A. Akman, Y. Chang, H. Coppock, A. Gebhard,
A. Kathan, E. Rituerto-Gonzdlez, A. Triantafyllopoulos, and F. B.
Pokorny, “Ecology; computer audition: Applications of audio technology
to monitor organisms and environment,” Heliyon, vol. 10, no. 1, p.
e23142, Jan. 2024.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

150

S. Ntalampiras and I. Potamitis, “Acoustic detection of unknown bird
species and individuals,” CAAI Transactions on Intelligence Technology,
vol. 6, no. 3, p. 291-300, Mar. 2021.

A. Emmanuel, B. Guda, N. D. Hailemariam, M. S. Meshach, and 1. T.
Barnabas, “Machine learning based rain gauge using acoustic data,” in
2023 IEEE AFRICON, 2023, pp. 1-4.

World Meteorological Organization, “Guide to meteorological
instruments and methods of observation: (cimo guide). 2014
edition, updated in 2017.[superseded],” 2017. [Online]. Available:
https://www.oceanbestpractices.net’/handle/11329/886

D. Liu, Y. Zhang, J. Zhang, L. Xiong, P. Liu, H. Chen, and J. Yin,
“Rainfall estimation using measurement report data from time-division
long term evolution networks,” Journal of Hydrology, vol. 600, p.
126530, Sep. 2021.

S. Grimaldi, A. Petroselli, L. Baldini, and E. Gorgucci, “Description
and preliminary results of a 100 square meter rain gauge,” Journal of
Hydrology, vol. 556, p. 827-834, Jan. 2018.

S. Pensieri, R. Bozzano, J. A. Nystuen, E. N. Anagnostou, M. N.
Anagnostou, and R. Bechini, “Underwater acoustic measurements to
estimate wind and rainfall in the mediterranean sea,” Advances in
Meteorology, vol. 2015, p. 1-18, 2015.

A. Trucco, R. Bozzano, E. Fava, S. Pensieri, A. Verri, and A. Barla,
“A supervised learning approach for rainfall detection from underwater
noise analysis,” IEEE Journal of Oceanic Engineering, vol. 47, no. 1,
pp. 213-225, 2022.

S. Hwang, C. Jun, C. De Michele, H.-J. Kim, and J. Lee, “Rainfall obser-
vation leveraging raindrop sounds acquired using waterproof enclosure:
Exploring optimal length of sounds for frequency analysis,” Sensors,
vol. 24, no. 13, p. 4281, Jul. 2024.

R. Avanzato and F. Beritelli, “An innovative acoustic rain gauge based
on convolutional neural networks,” Information, vol. 11, no. 4, p. 183,
Mar. 2020. [Online]. Available: http://dx.doi.org/10.3390/info11040183
E. Adirosi, F. Porci, M. Montopoli, L. Baldini, A. Bracci, V. Capozzi,
C. Annella, G. Budillon, E. Bucchignani, A. L. Zollo, O. Cazzuli,
G. Camisani, R. Bechini, R. Cremonini, A. Antonini, A. Ortolani,
S. Melani, P. Valisa, and S. Scapin, “Database of the italian disdrometer
network,” Earth System Science Data, vol. 15, no. 6, p. 2417-2429, Jun.
2023.

M. Wang, M. Chen, Z. Wang, Y. Guo, Y. Wu, W. Zhao, and X. Liu,
“Estimating rainfall intensity based on surveillance audio and deep-
learning,” Environmental Science and Ecotechnology, vol. 22, p. 100450,
Nov. 2024.

M. I. Alkhatib, A. Talei, T. K. Chang, A. A. Hermawan, and V. R.
Pauwels, “Towards the development of a citizens’ science-based acoustic
rainfall sensing system,” Journal of Hydrology, vol. 633, p. 130973, Apr.
2024.

R. S. Xavier, M. Gosset, T. F. Maciel, T. Bicudo, L. A. d. Nascimento,
E. Ramalho, and A. Fleischmann, “Measuring amazon rainfall intensity
with sound recorders,” Geophysical Research Letters, vol. 51, no. 20,
Oct. 2024.

M. Chen, X. Wang, M. Wang, X. Liu, Y. Wu, and X. Wang, “Estimating
rainfall from surveillance audio based on parallel network with multi-
scale fusion and attention mechanism,” Remote Sensing, vol. 14, no. 22,
p- 5750, Nov. 2022.

H. Purwins, B. Li, T. Virtanen, J. Schliiter, S.-Y. Chang, and T. Sainath,
“Deep learning for audio signal processing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 13, no. 2, pp. 206-219, 2019.

S. Ntalampiras, L. A. Ludovico, G. Presti, M. V. Vena, D. Fantini,
T. Ogel, S. Celozzi, M. Battini, and S. Mattiello, “An integrated system
for the acoustic monitoring of goat farms,” Ecological Informatics,
vol. 75, p. 102043, Jul. 2023.

E. Vaghefi, S. Hosseini, B. Prorok, and E. Mirkoohi, “Geometrically-
informed predictive modeling of melt pool depth in laser powder
bed fusion using deep mlp-cnn and metadata integration,” Journal of
Manufacturing Processes, vol. 119, p. 952-963, Jun. 2024.
International Civil Aviation Organization, Manual on Automatic
Meteorological ~ Observing  Systems at Aerodromes, ser. Doc
(International Civil Aviation Organization), 2006. [Online]. Available:
https://books.google.it/books?id=HR 10UEPsvfQC

S. Ntalampiras and A. Scalambrino, “Automatic prediction of dis-
turbance caused by inter-floor sound events,” IEEE Transactions on
Cognitive and Developmental Systems, pp. 1-8, 2024.

A. Akman and B. W. Schuller, “Audio explainable artificial intelligence:
A review,” Intelligent Computing, vol. 3, Jan. 2024.



