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Abstract—This paper presents a novel methodology that uti-
lizes inductive representation learning with a long short-term
memory aggregator to detect multiple avian vocalizations from
field recordings. Initially, a graph is constructed from the Mel-
spectrogram of the audio file using a trained deep convolu-
tional neural network (Deep CNN). This graph is then fed
into a GraphSAGE-LSTM module in the subsequent phase for
classification. To enhance the training of the Deep CNN, the
SpecAugment technique is employed to generate additional Mel-
spectrograms. The proposed algorithm is evaluated on the Xeno-
canto bird sound database, and its performance is compared
to state-of-the-art models. The proposed approach outperforms
existing methods and spectral graph-based models, achieving a
macro F1 score of 0.90.

Index Terms—GraphSAGE, long short term memory, data
augmentation, multi-label bird classification, inductive represen-
tation learning

I. INTRODUCTION

Bird recognition through vocalizations relies on speech
recognition, audio classification, and pattern recognition tech-
niques. Acoustic features play a crucial role in accurately
representing bird calls, which directly impacts recognition
success [1], [2]. Methods from speech and audio processing
[3], [4], along with artificial neural networks [5], have been
widely used for bird vocalization identification, with many
studies focusing on classifying pre-segmented single-label
acoustic recordings [6]–[8]. Some of the previous works based
on deep learning frameworks for multi-label bird classification
are [9]–[14].

Several graph-based models have been widely studied,
including ChebNet [15], GraphSAGE [16], GCN [17], and
GAT [18]. GCN models are notable for their semi-supervised
classification using layer-wise propagation based on first-
order spectral convolutions [17]. The graph neural tangent
kernel (GNTK) explores node correspondences using graph
topology and node features [19], while adaptive graph models
[20] enhance intra-class relationships for smooth predictions.
Recently, researchers [21] has also tackled multi-label classi-
fication using GCN, which introduces a relation matrix based
on correlation and sparsity among samples. An end-to-end
audio tagging GNN (ATGNN) [22] combines CNN-extracted

local features with graph convolutions to tag audio from
spectrogram-based k-nearest neighbor graphs.

Several papers [21], [23]–[28] explore the use of graph
networks in audio classification. For instance, [29] introduces
a subgraph-based framework incorporating self-supervision
tasks. Here, subgraphs are derived by sampling from the
training data, extracting pertinent features, and establishing
connections between data samples based on similarity or
relationship. This iterative process generates multiple sub-
graphs from different subsets of the training data, with the
addition of random edges to streamline graph construction
during inference. In [30], graphs are directly constructed from
spectrograms, combining GCN with CNN features to form an
ensemble approach. In [31], the initial node representations
are generated from the word embeddings of the labels. Subse-
quently, the GCN learns final node representations, which are
employed for classifying acoustic representations. Unlike [30],
[31], the novelty of our method lies in the graph generation
approach from Mel-spectrograms. We utilize a Deep CNN
model trained on isolated bird calls to generate graphs from
Mel-spectrograms of raw audio containing multiple calls, us-
ing sliding window analysis. These graphs are then processed
by GraphSAGE-LSTM for classification. The key novelty of
this work is the Mel GraphSAGE-LSTM framework, which
combines Deep CNN with GraphSAGE-LSTM for analysis
and classification.

II. INDUCTIVE REPRESENTATION LEARNING

Inductive representation learning refers to the process of
learning representations (embeddings) for nodes in a graph,
allowing for generalization to unseen data or nodes that were
not present during the training phase.

A prominent example of this approach is the GraphSAGE
(Graph Sample and Aggregate) model which operates in
spatial domain, where the embedding for a node v at the kth
layer is computed as:

h(k)
v = σ

(
W(k) · AGG(k)

(
{h(k−1)

u : u ∈ N (v)}
)
+ b(k)

)
(1)
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Fig. 1: The block diagram of the proposed method for multi-label bird classification

In this equation, h
(k)
v represents the embedding of node

v at the kth layer, W(k) is a learnable weight matrix, σ is
an activation function (such as ReLU), and N (v) denotes
the set of neighboring nodes of v. The AGG function can
be realized using different methods like mean, LSTM and
pooling aggregator, each capturing different aspects of the
neighborhood information.

LSTM Aggregator: uses a Long Short-Term Memory
network to process the sequence of neighboring node features,
capturing more complex dependencies. The aggregation pro-
cess is described as:

h
(k)
N (v) = LSTM

([
h(k−1)
u

]
u∈N (v)

)
(2)

h(k)
v = σ

(
W(k) ·

[
h(k−1)
v ‖h(k)

N (v)

]
+ b(k)

)
(3)

GraphSAGE with LSTM Aggregator aggregates features
from neighboring nodes using an LSTM. The LSTM processes
the features of neighboring nodes and outputs aggregated
features for each node. For each node, the features of its
neighbors are collected, processed by the LSTM, and then
aggregated into a single feature vector. The LSTM’s last
hidden state is used as the aggregated feature for each node.

III. PROPOSED FRAMEWORK

We present a novel graph-based method using for multi-
label bird species classification from raw audio recordings as
given in Fig. 1. The detailed steps are as follows.

A. Mel Graph Extraction

Mel-spectrograms are computed using a 30 ms frame size
and a 10 ms hop size, and additional Mel-spectrograms can

be generated using data augmentation [32]. The proposed deep
CNN is trained with Mel-spectrograms of single-labeled audio
files (each containing one isolated bird). A short-segment
analysis with varying slicing length (1s, 1.5s, 2s, 2.5s, 3s)
is performed on multi-label audio recordings. Among them,
a slicing length of 1.5 s is empirically chosen, and Mel-
spectrogram corresponding to each segment is fed to the deep
CNN to identify the most probable species(see Fig. 1).

A graph G={V, E} with adjacency matrix A(i, j) is con-
structed from the labels obtained sequentially from each seg-
ment. These labels corresponds to the most predominant bird
(highest probability) at the nodes of the deep CNN. Here, i and
j represent nodes of the graph. Similarly, separate graphs are
generated for the second most predominant species and so on.
The process is illustrated in Fig. 1 and Algorithm 1. Each node
in the graph represents a bird species (label), and edges denote
connections between different species. These connections are
determined based on the relationships observed in the audio
recording. For instance, if two segments of the audio recording
contain bird calls of the same species, there will be a self-loop
connecting the corresponding node in the graph, and if they are
of different species, there will be a directed edge connecting
the former and the latter. The weights on the edges of the
graph represent the frequency of occurrence of the label. The
graph and the corresponding ground truth for each audio file
is used to train the GraphSAGE in the second phase

B. Classification using GraphSAGE

The model is constructed using graph convolutional layers
as shown in Fig. 1. The input to the network is the graph
adjacency matrix whose nodes have d-dimensional features.
The d-dimensional features that are input to the GraphSAGE
are obtained from the deep CNN model. When GraphSAGE
uses these features to classify the graph, it takes into account
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TABLE I: Precision (P), recall (R), and F1 score of the various deep learning models
No. Species name (ID) Puget et al. [33] Yang et al. [34] Mel Graph- Mel Graph- Mel Graph-

Transformer SENet ChebNet GCN SAGE-LSTM
P R F1 P R F1 P R F1 P R F1 P R F1

1 House Crow (HC) 0.95 0.91 0.93 0.98 0.62 0.76 0.70 0.76 0.72 0.90 0.95 0.92 0.81 0.91 0.86
2 Mallard Duck (MD) 0.73 0.66 0.70 0.62 0.62 0.62 0.65 0.68 0.67 0.81 0.83 0.82 0.89 0.87 0.88
3 Asian Koel (AK) 0.82 0.67 0.74 0.64 0.81 0.72 0.74 0.76 0.75 0.98 0.88 0.93 0.93 0.83 0.88
4 Eurasian Owl (EO) 0.30 0.45 0.35 0.41 0.25 0.31 0.91 0.80 0.85 0.94 0.62 0.75 1.00 0.89 0.94
5 House Sparrow (HS) 0.76 0.48 0.56 0.55 0.41 0.47 0.75 0.80 0.77 0.81 0.94 0.87 0.95 0.96 0.96
6 Blue Jay (BJ) 0.68 0.44 0.54 0.46 0.78 0.58 0.73 0.68 0.70 0.64 0.86 0.74 0.88 0.72 0.79
7 Red. Lapwing (RL) 0.66 0.70 0.68 0.54 0.34 0.42 0.93 0.84 0.88 0.92 0.76 0.83 0.96 0.93 0.94
8 Grey go-away (GG) 0.69 0.80 0.74 0.47 0.85 0.60 0.76 0.81 0.78 0.87 0.83 0.85 0.81 0.96 0.88
9 Indian Peafowl (IP) 0.54 0.93 0.68 0.91 0.81 0.86 0.75 0.80 0.77 0.82 0.97 0.90 0.92 0.95 0.93

10 W.Pewee (WW) 0.85 0.80 0.83 1.00 0.33 0.49 0.90 0.81 0.86 0.96 0.78 0.86 0.93 0.88 0.90
Macro Average 0.69 0.68 0.67 0.65 0.58 0.58 0.78 0.77 0.77 0.87 0.84 0.85 0.83 0.89 0.90

Algorithm 1 Graph Creation for an Audio File

1: Input:
2: arr[i][j] (size: 6× 10)
3: - Each column represents one of 10 species
4: - Each row corresponds to a 1.5s frame within 9s
5: - Entries indicate the probability of each species occur-

ring during a time interval
6: Output:
7: A graph with vertices as labels, edges as connections,

and edge weights as their frequency of occurrence
8: Initialize an empty list mp
9: for i = 0 to 5 do

10: Set mp[i] to the most probable species in row arr[i]
11: if mp[i] is not in the set of graph vertices then
12: Add mp[i] as a new vertex to the graph
13: end if
14: if i > 0 then
15: if an edge between mp[i−1] and mp[i] exists then
16: Increment the edge weight between mp[i−1]

and mp[i] by 1
17: else
18: Create an edge between mp[i−1] and mp[i]

with weight 1
19: end if
20: end if
21: end for

the temporal dependencies between different segments of the
audio file, which is important for capturing the complex inter-
actions between different bird calls. This allows GraphSAGE
to effectively identify patterns and relationships in the data
that might not be apparent from individual segments alone.

IV. EXPERIMENTAL FRAMEWORK

We evaluate performance using the Xeno-canto database
[35]. The dataset includes 32-bit mono WAV files sampled
at 16 kHz. The training set consists of 1,078 files, each 1.5
seconds long, featuring isolated vocalizations from 10 species:
House Crow (111), Mallard Duck (106), Asian Koel (121),
Eurasian Owl (107), House Sparrow (100), Blue Jay (109),
Red Lapwing (104), Grey Go-away (109), Indian Peafowl
(103), and W. Wood Pewee (108). The test set comprises
434 audio files, each 9 seconds long, containing overlapping
vocalizations and multiple bird calls (334 files with 2 species;

100 files with 3 species). Additionally, we generated 3,344
Mel-spectrograms for CNN training through data augmenta-
tion techniques described in [32].

Mel-spectrograms are extracted using the librosa Python
package. The deep CNN employs SpecAugment [32], which
operates on the log Mel-spectrogram of the input audio. We
use the LibriSpeech basic (LB) approach with parameters
W = 80, F = 27, T = 100, mF = 1, and mT = 1,
where W , F , and T denote warping, frequency, and time
masking parameters, respectively, and mF and mT represent
the number of frequency and time masks applied. The Mel-
spectrograms, with dimensions of 432 × 1008 × 3, are input
into the deep CNN. The CNN architecture features successive
double convolutional layers with filter sizes of 32, 32, 64, 64,
128, 128, 256, and 256, as depicted in Fig. 1.

A. Spectral Graph-based Models

ChebNet: Utilizes three Chebyshev Convolution (Cheb-
Conv) layers. The first layer expands node features to 32 di-
mensions using K=3 polynomials, the second layer maintains
these dimensions, and the final layer reduces them to 1. ReLU
activation is applied after each layer.
GCN Model: Consists of three GCNConv layers, each with
32 hidden dimensions and ReLU activation. It focuses on
propagating node features across the graph.

B. Proposed Spatial Graph-based Model

The GraphSAGE-LSTM model integrates GraphSAGE with
LSTM to handle graph-based data, using dynamic node fea-
tures for prediction tasks. It includes two LSTMGraphSAGE-
Conv layers: the first maps node features from a dimensionality
of 1 to 16 (hidden channels), and the second maintains this 16-
dimensional feature space. Each LSTMGraphSAGEConv layer
incorporates an LSTM with an input size of 1 and a hidden
size of 16, followed by a linear transformation to project the
LSTM output to the 16-dimensional space. The final prediction
is produced by a linear output layer that reduces the 16-
dimensional feature space to a single output. Finally, Node
features are aggregated using global max pool to create a
graph-level representation before applying the output layer.

All the graph models are trained for up to 100 epochs with
a batch size of 32, using the Adam optimizer with a learning
rate of 0.01, the MSE loss function, and a sigmoid activation
function at the output. 10% of the dataset is used for validation.
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C. Analysis of Results

Our model reports macro average precision(P), recall(R),
and F1 score as 0.83, 0.89, and 0.90, respectively in Table
I. For the proposed approach, all the classes report an F1
score greater than 75% as opposed to the performance of other
models [15], [33], [34]. This model shows superior results for
House Sparrow (96%), Eurasian Owl (94%), Red. Lapwing
(94%), Indian Peafowl (93%), and W. Peewe (90%) species in
terms of F1 score. In Fig. 2, we present the Hamming loss and
exact match results for the proposed classification algorithms.
The Deep CNN exhibits a Hamming loss of 21.18% and an
exact match of 61.86%. The GraphSAGE-LSTM model stands
out with a significantly lower Hamming loss of 14.03% and a
higher exact match of 84.89%. Other models, such as GCN,
also show competitive performance.
We experimented with varying number of LSTM-SAGEConv

Fig. 2: Hamming loss and exact match metrics for evaluation

blocks Table. II. It is noticed that the model provides optimum
performance for two blocks and for 16 hidden dimensions, as
shown in Fig. 3.

Fig. 3: Metrics with varying no. of hidden dimensions

TABLE II: Varying number of layers in graph models. Best
values are highlighted

Method
Block 2 3 4

ChebNet (K=3) 0.74 0.77 0.74
GCN 0.80 0.85 0.84
GraphSAGE-LSTM 0.90 0.90 0.88

The training analysis in Table III shows that GCN has 1153
parameters, while ChebNet has 3345 and GraphSAGE-LSTM
has 3953 parameters. The reduced parameters in graph models
compared to transformer, SENet, and Transfer learning models
enhance efficiency and scalability, enabling faster training and
lower computational demands, crucial for real-time processing

TABLE III: Training of the systems. M stands for Million
Method Data Parameters Time

Transformer 10,000 0.26 M 9.09 hrs
SENet 1078 1.45 M 1.83 hrs
Transfer Learning 3345 24.8 M 13.09 mins
Mel Graph-ChebNet (K=3) 587 1.4M+3345 8 mins
Mel Graph-GCN 587 1.4 M+1153 7.38 mins
Mel GraphSAGE-LSTM 587 1.4 M+3953 7.38 mins

TABLE IV: Performance comparison with existing methods
Method Approach P R F1
Grill et al. [Model1] [36] CNN-Global 0.50 0.50 0.45
Grill et al. [Model2] [36] CNN-Local 0.51 0.48 0.48
Efremova et al. [37] Transfer Learning 0.61 0.55 0.53
Puget [33] Transformer 0.69 0.68 0.67
Yang et al. [34] SENet 0.65 0.58 0.58
Gao et al. [38] Res2Net 0.61 0.61 0.60
Junyan Liu et al. [39] SE-Protonet-DCASE 0.58 0.57 0.58
Proposed CNN only Deep CNN 0.60 0.60 0.59
Proposed CNN only Deep CNN (+aug) 0.78 0.74 0.75
Defferrard et al. [15] Mel Graph-ChebNet 0.78 0.77 0.77
CNN-GCN Mel Graph-GCN 0.87 0.84 0.85
CNN-GraphSAGE Mel GraphSAGE 0.83 0.89 0.90

on resource-constrained devices. This efficiency may also im-
prove generalization by reducing overfitting, highlighting the
importance of graph representation learning in deep learning
applications.

We may be curious to see the results with deep CNN
alone, without using the CNN-GraphSAGE-LSTM combo for
multi-vocalization detection. From the Table IV, it is evident
that the dual system outperforms the deep CNN model. We
implemented all the methods given in Table IV on our multi-
label dataset and reported the results. The proposed spatial-
based GNN, GraphSAGE-LSTM performs better than the
ChebNet-based model [15], [40]. The inferior performance
of ChebNet could be attributed to learning illegal coefficients
while approximating analytic filter functions, leading to over-
fitting [40]. The proposed Mel GraphSAGE-LSTM achieves
an F1 score of 0.90 shows a relative improvement of 37%, 32%
and 23% over the existing state-of-the art models discussed in
[33], [34], [37].

V. CONCLUSION

This paper presents a novel Mel GraphSAGE-LSTM frame-
work for multi-label bird species classification, combining
GraphSAGE-LSTM with a Deep CNN trained on Mel-
spectrograms. The framework processes graphs created by
the front-end trained Deep CNN. A SpecAugment-based aug-
mentation scheme is used to create additional train data.
Compared to recent methods and other spectral-based GNNs,
the proposed spatial-based Mel GraphSAGE-LSTM achieves
the highest F1-score of 0.90 on the Xeno-canto dataset,
with fewer parameters and faster training. Although spectral
GNNs slightly outperform spatial GNNs in terms of parameter
efficiency, the results underscore the effectiveness of the Deep
CNN-GraphSAGE-LSTM approach for accurately classifying
multiple bird species from audio recordings.
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