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Abstract—Modern vehicles emphasize cabin quietness and
high-quality audio, which can mask critical auditory cues like
emergency sirens. This issue is especially challenging for people
with hearing loss. While some manufacturers have proposed
automatic siren detection systems, existing solutions typically
rely on external microphones, introducing hardware constraints.
In this work, we tackle the problem of in-cabin siren detec-
tion, where low signal-to-noise ratios and spectral overlap with
speech present significant challenges. We propose a novel, small-
footprint detection system designed for real-time, frame-by-frame
processing. Our system is trained on a synthetically generated
dataset, enabling it to recognize diverse global siren sounds
and generalize beyond region-specific recordings. Performance
evaluations demonstrate its suitability for vehicle integration,
offering a critical safety enhancement in increasingly quiet
automotive environments.

Index Terms—Siren detection, edge AI, acoustic event detec-
tion, in-cabin sensing, deep learning

I. INTRODUCTION

The automotive industry is evolving along two parallel
trends: enhancing cabin comfort through Active Road Noise
Cancellation (ARNC) and improved Noise, Vibration, and
Harshness (NVH) characteristics [1], while simultaneously
refining the in-car audio experience with high-fidelity sound
systems and personal listening zones [2]. While these advance-
ments elevate passenger comfort, they also introduce a critical
safety concern: masking essential auditory cues such as sirens
from emergency vehicles. This issue is exacerbated in people
with hearing loss, as evidenced by studies demonstrating a
heightened risk of dangerous situations among elderly indi-
viduals with hearing impairment [3].

To address this, existing Emergency Vehicle Detection
(EVD) systems typically rely on externally mounted micro-
phones, which capture clearer audio signals by minimizing
interference from in-cabin noise [4], [5]. However, this ap-
proach presents challenges for hardware integration, including
weatherproofing, and secure mounting [6].

This work focuses on addressing in-cabin EVD, which
presents two major acoustic challenges: (i) Low Signal to
Noise Ratio (SNR) due to noise sources such as engine, tire
and fan noise, and sound reflections; (ii) Spectral overlap
with speech and music that share harmonic characteristics
with siren sounds, making simple frequency-based separation,
such as [7], ineffective and requiring more advanced analysis
to distinguish between them. On the one side, large neural

networks can achieve high accuracy by requiring significant
computational resources. On the other side, computationally-
light approaches often focus on detecting a specific type of
siren, e.g., for a specific country [8]–[10].

In this work, we propose a small-footprint, low-resource
approach capable of real-time general EVD. We train it on a
synthetically generated dataset that includes a diverse range of
siren sounds from various emergency vehicles worldwide (e.g.,
police cars, ambulances, fire trucks) and incorporates multiple
international siren standards to ensure broad adaptability and
avoid regional limitations. Synthetic data generation also al-
lows for controlled and diverse training scenarios, addressing
the scarcity of real-world siren recordings [11].

Alongside classification of the presence of an emergency
vehicle, we add a layer for Voice Activity Detection (VAD),
and we analyze its use to help disambiguation between
speech and siren sources. We compare the performance of
our approach against a baseline from the state of the art with
traditional metrics from EVD. We evaluate the performance
against different types of sirens. As ablation studies, we
test the effectiveness of the VAD layer by removing it and
testing the performance with a dataset with and without speech
samples, and confirm the choice of a compact input audio
representation.

II. PROBLEM FORMULATION

Modern vehicles are equipped with multiple microphones
whose placement varies across different car models [12]. To
ensure generality, in this study we focus on a scenario in
which the signal x[t] is acquired by a single microphone. The
n-th frame of T samples of the acquired signal, capturing
contributions from multiple acoustic sources, is denoted as

x[n] = s[n] + e[n] + c[n] + v[n], (1)

where x[n] = [x[nT ], x[nT + 1], ..., x[(n + 1)T − 1]]; s[n]
denotes one or more speech sources (e.g., driver, passengers,
etc.); e[n] is the possibly occurring emergency vehicle siren;
c[n] represents the audio playback from the car’s loudspeakers
(e.g., music, far-end phone calls, etc.); v[n] accounts for any
other additional environmental noise (e.g., traffic, road noise,
engine noise, etc.).

The signal frame x[n] includes any transformation intro-
duced by the cabin’s acoustic properties, such as room impulse
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(a) Log-Energy spectrogram
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(b) Input audio representation

Fig. 1: Comparison between the original spectrogram and the input of the neural network.

response for speech sources, and the Doppler effect for moving
emergency vehicles. We assume the known playback signal
c[n] is removed with an echo cancellation module and its
contribution is negligible (i.e., c[n] ≈ 0).

The goal of real-time EVD is to detect the presence of
an emergency vehicle siren at each acquired frame x[n],
i.e., |e[n]| > 0. To achieve this, we employ a deep learn-
ing technique to infer the probability of presence from the
observed signal, i.e., p̂[n] = F(x[n]) ∈ [0, 1]. A final
binary classification decision is obtained by thresholding the
estimated probability.

III. TYPES OF SIRENS

The siren signal e[n] varies with the type of emergency
vehicle and their country, as different countries have different
legislation. In general, a siren sound is formalized as a periodic
function Φ (often a square function [13]) of a fundamental
frequency f [t] as e[t] = Φ(f [t], t), where t is the discrete-
time index.

The fundamental frequency function f [t], which is time-
varying, depends on the type of siren. The most common types
of siren are named wail, yelp, and two-tone, each characterized
by specific modulation behaviors [14]. While in wail and yelp
sirens f [t] spans the whole range of frequencies between flow
and fhigh, in two-tone sirens f [t] just alternates between flow
and fhigh, whose values depend on country regulations.

In wail and yelp sirens, it takes Trise and Tfall seconds to
modulate between the two frequencies in the rising and the
falling phase, respectively, with modulation patterns such as
linear, quadratic or exponential variations. Wail sirens have
Trise and Tfalls of several seconds, and yelp sirens have shorter
times and usually higher frequencies [13], as seen in Fig. 1a.

In two-tone sirens, f [t] is a square wave defining the cycle
through which the two frequencies are sustained.

IV. PROPOSED APPROACH

To correctly detect sirens in real-time audio sequences, we
implement a neural network model starting with a compact
audio representation to perform EVD at frame level.

Audio Representation. We compute the energy spectrogram
of the signal, and filter it with a bank of 32 triangular filters
equally spaced in the log-frequency domain between 0 and 3.5

TABLE I: Network architecture of the proposed method

Layer # pars Output dim. (ch. first) Channels

Conv 1 + MP 22 [2,16] 2
(Dep)Conv 2 + MP 60 [4,8] 4
(Dep)Conv 3 + MP 152 [8,4] 8

GRU 1008 [8] 8
FCsiren 9 [1]
FCvad 9 [1]

Total 1260

kHz, focusing on the fundamental frequency f [t] and making
this solution suitable even for Narrow Band (NB) applications.
Fig. 1 shows an example of a log-energy spectrogram of a yelp
siren recording and its corresponding representation.

Network architecture. In Table I we summarize the network
by reporting its layers and their number of parameters. In
total, it employs 1260 parameters and requires only 0.25 Mega
Multiply-Accumulate per second (MMACs) to work, making
it a small model both in memory and computational require-
ments. We employ three depth-separable convolutional layers
with 3×3 kernels followed by a batch normalization layer and
a Rectified Linear Unit (ReLU) activation function and a max
pooling layer over the frequency axis. These convolutional
layers are trained in a causal fashion to make each output
depending only on current and past frames, avoiding look-
ahead. We then use a Gated Recurrent Unit (GRU) layer to
capture long-term temporal dependencies from the extracted
features, improving the model’s ability to detect repeating siren
patterns. Lastly, we employ two fully-connected classification
layers, one for EVD and one for VAD. The two layers receive
the same GRU’s output in order to enhance the network’s
ability to disambiguate between sirens and speech. For this
reason, the VAD layer is only used in training and it is not
computed at inference time.

Data generation. Traditional EVD task does not require to
disambiguate from speech and therefore common datasets for
the task are not annotated with voice presence. Moreover, the
variety of sirens is limited to the regulations of the countries
where the recordings were acquired [15].

In order to train our model with robustness to speech and
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Fig. 2: Comparison on Precision, Recall, and Accuracy on the real evaluation dataset at different SORs.

effectiveness on different sirens, we build a dataset by mixing
various audio samples to simulate the acoustic scenario, and
we synthesize the sirens following the principles drawn in
Section III as in [11].

We apply Doppler effect to generated sirens using the
Pyroadacoustics library [16], mix them with noise samples
at different gain and apply a band-pass filter to simulate
the sound shielding effect of car windows. We then add
speech samples and simulate different microphones frequency
responses by means of biquad filters as in [17].

Training. The training of the neural network is performed
with an online dataset, where a set of sequences is generated
for each training step. This grants more variability to the
training set, thus improving the generalization capability of
the network. The training procedure is highly randomized, and
each component is mixed with a random SNR = |s|2/|v|2 ∈[0,
30] dB, a random Siren to Other Ratio (SOR) |e|2/|v+ s|2 ∈
[-15, 15]. Each mixed sample is then rescaled with a random
gain between -15 and 0 dB, to train the network to detect
sirens at varying microphone sensitivities.

The training loss is a weighted sum of binary cross-entropy
losses for EVD and VAD, with weights of 10 and 1 empirically
determined from the validation set, that has been generated
with the same technique of the training set from unseen data.

V. EXPERIMENTAL SETUP

The proposed network is trained with 10 s-sequences in
batches of 8 sequences and with 128 steps per epoch, i.e.,
2.84 hours of randomly generated audio sequences per epoch.
For the audio representation we use 20 ms Vorbis windows
with 10 ms stepsize (T = 160) as in [17], which allows the
model to run EVD at 100 Hz.

The training set is generated using speech samples from the
VCTK dataset [18], the noise samples from the DNS4 [19]
dataset, sirens synthesized following the EN UNI 1789 for
two-tone sirens and the SAE j1849, GSA K and CCR regula-
tions for wail and yelp sirens [13].

Using different speech, noise and siren samples from the
same datasets we also generate a synthetic evaluation dataset
to maintain the control of the siren types.

We also generate a real evaluation dataset using differ-
ent datasets to evaluate our proposed solution in out-of-
domain conditions. We use speech samples from the EARS
dataset [20], environmental noise samples from the Urban-
Sound8k dataset [21], road noise samples from the sireNNet
dataset [22] and sirens from a collection of recordings covering
emergency vehicles from various countries, including sirens
whose type was not seen during training.

The synthetic and real evaluation datasets are composed of
1000 10-second audio sequences each.

VI. EVALUATION

We evaluate our approach considering frame level classi-
fication, while skipping the excerpt during the 250 ms after
siren presence change, in order to compare it with average
human reaction time [23].

The approaches in the literature commonly perform EVD at
excerpt level [4], [5]. In order to perform a fair comparison,
we use as Baseline the approach from [5], adapted to work
at frame-level by modifying the max pooling and flattening
layers. This leads to reducing the size of the model from about
25 K parameters to about 4.5 K. We also compare our method
with an extremely larger version of our approach, with about
4.7 M parameters, that we name Proposed Maxi. We avoid
comparing our solution with larger self-supervised learning
models for Sound Event Detection, as they do not comply
with the computational requirements for EVDs in commercial
applications.

In Fig. 2 we show the precision, recall and accuracy for
three SOR ranges: low for SOR ≤ −5 dB, medium for
−5 < SOR < 5 dB and high for SOR ≥ 5 dB, against the
real evaluation dataset. We can see that the proposed approach
outperforms the baseline for every metric and for every SOR.
We also observe that increasing the size of the proposed
approach does not yield better results. This is likely due to
the compact representation limiting the network’s predictive
power.

While at medium and high SOR the proposed approach
achieves high results, at low SORs the model predictions lean
toward higher precision and lower recall. This behavior can
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TABLE II: Average metrics against the real evaluation dataset

A P R F1 EER

Baseline 87.01% 87.34% 81.41% 82.10% 13.07%
Proposed 91.52% 94.61% 86.68% 87.79% 8.61%

Proposed Maxi 89.69% 94.47% 82.77% 85.89% 9.15%

be tuned by choosing a lower threshold. It is worth high-
lighting that a negative SOR scenario is only expected with
the emergency vehicle being extremely far from the vehicle,
when a false negative may not be critical. With approaching
emergency vehicles, the SOR is expected to increase at a
higher level (as it is designed to be perceived by drivers [24])
and hence to be detected by the system.

In Fig. 3 we show the Receiver Operating Characteristic
(ROC) curve and display the corresponding Equal Error Rate
(EER). We notice again that the ROC curve of the proposed
approach is always better than the baseline for every threshold,
and even better than the large solution, achieving a final EER
of 8.6% between false alarms and false reject. As EVD is a
safety-focused task, we may want to reduce the False Reject
Rate to 5%, which would require having a False Alarm rate
of 20%. This is a general drawback of the solution.

In Table II we summarize the metrics against the whole
evaluation dataset. We confirm that the Proposed approach is
the best performing one, and that Recall is lower, leading to
a lower F1 with respect to the accuracy.

Our approach is designed to be robust to different siren
types and regulations. We verify this claim by analyzing
the performance against the synthetic evaluation dataset over
different types of sirens. The Proposed Maxi solution performs
marginally better with wail and two-tone sirens, while the
Proposed solution performs better with yelp sirens. We assume
that this is caused by the larger GRU in the Proposed Maxi
solution which may be more capable of learning long-duration
patterns, such as those from the wail sirens and from the
two-tone sirens. The yelp sirens, instead, are characterized by
shorter temporal patterns, helping the more compact Proposed
solution to perform better than the others. It is worth highlight-
ing that while the EER for the two-tone sirens is significantly
lower than that of the wail and yelp sirens, the other metrics
are comparable. This suggests that the default threshold (0.5)
is not optimal for the two-tone sirens and that with dedicated
tuning, the performance may increase even more.

In general, the performance against the synthetic and the
real evaluation datasets are comparable, confirming that the
generation process creates realistic audio files.

VII. ABLATION STUDIES

Firstly, we evaluate the effectiveness of the compact audio
representation with respect to a network trained with a full
log-energy spectrogram as shown in Fig. 1. From Table IV we
see that using a full representation only guarantees a marginal
improvement for Recall, F1 and EER scores, while achieving
even lower Accuracy and Precision. We assume that the small
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Fig. 3: ROC curves and corresponding EER values

TABLE III: Average metrics against the synthetic evaluation
dataset at different siren types

Wail siren A P R F1 EER

Baseline 89.34% 82.45% 88.97% 83.12% 8.28%
Proposed 93.58% 88.18 % 85.51% 84.69% 7.69 %

Proposed Maxi 95.47% 88.88% 93.86% 90.05% 5.06 %

Yelp siren A P R F1 EER

Baseline 87.08% 93.85% 86.73% 88.70% 9.61%
Proposed 90.40% 96.54% 89.21% 90.66% 7.69%

Proposed Maxi 89.57% 96.41% 88.29% 88.98% 7.85%

Two-tone siren A P R F1 EER

Baseline 95.62% 92.21% 95.68% 92.91% 3.15%
Proposed 95.81% 94.94 % 92.16% 92.70% 3.36%

Proposed Maxi 97.53% 95.27% 96.82% 95.58% 2.46%

network does not hold enough predictive power to exploit the
more accurate audio representation.

Secondly, we assess the impact of the VAD layer on
improving robustness against speech presence by comparing
the performance of the proposed approach trained with and
without the VAD layer. This comparison is made using both
the real evaluation dataset and an alternate version where
speech is not added to the mixture. From Fig. 4, it is
interesting to note that the VAD classification layer helps
to improve performance even when tested against a dataset
without speech, achieving 6.76% EER. When adding speech
to the dataset, performance decreases for all the approaches
under test, effectively demonstrating the issue of correctly
disambiguating between speech and sirens. Nevertheless, it is
clear that the proposed approach when trained with the VAD
layer achieves better performance, with a 8.61% EER. It is
worth noticing that the proposed approach trained without the
VAD layer still achieves better performance than the baseline
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TABLE IV: Comparison between different input audio repre-
sentations

A P R F1 EER

32 Freq. Bands 89.1% 91.9% 83.0% 84.6% 11.41%
Log-Spec. 88.1% 89.6% 86.2% 85.5% 11.15%
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Fig. 4: ROC curves and corresponding EER values for VAD

approach, possibly due to its compact audio representation that
focuses on the siren’s fundamental frequencies and discards
most of the harmonics that may lead to misclassification.

VIII. CONCLUSIONS

This paper presents a small-footprint, real-time siren detec-
tion system for the challenging in-cabin automotive scenario.
We train our network on a synthetically generated dataset,
enabling robust recognition of diverse global siren sounds,
and include a VAD classification layer to provide robustness
against speech presence. We compare our approach with a
baseline solution and with a larger version of our proposed
approach, achieving comparable or better results with respect
to the baseline, especially in low SOR and against different
types of siren. We also demonstrate the effectiveness of the
VAD classification layer to help disambiguate between speech
and siren and of the compact audio representations employed
for our solution.

As future works, we intend to explore solutions to improve
the performance of the approach in low SOR and reduce
ROC curves and EER. We will also implement the proposed
solution on a microcontroller-based device in order to verify
its minimal computational complexity and performance in a
real-world scenario.
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