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Abstract—We propose a speaker selection mechanism (SSM)
to enhance the training of a beamforming neural network. Our
approach is motivated by the observation that listeners typically
orient themselves toward the target speaker at a slight undershot
angle. The mechanism enables the neural network to learn which
speaker to focus on in multi-speaker scenarios, based on the
relative positions of the listener and speakers. Importantly, only
audio input is required during inference. We conduct acoustic
simulations to evaluate the effectiveness of the SSM, demon-
strating its impact on performance. Results show significant
increase in speech intelligibility, quality, and distortion metrics,
outperforming both the ideal minimum variance distortionless
filter and the same neural network model trained without SSM.

Index Terms—Speaker selection mechanism, neural network,
audio beamforming, cocktail party problem

I. INTRODUCTION

“How do we recognize what one person is saying when
others are speaking at the same time?” [1, p. 117]. This simple
question formulates the cocktail party problem, which refers
to the ability of the human hearing to separate voices that
are mixed, in frequency and time. While such an ability is
present in normal hearing, hearing impaired listeners might
face difficulty in segregating auditory streams [2].

Hearing impaired listeners frequently rely on hearing aids,
sound-amplifying devices which employ beamforming strate-
gies. Such devices usually beamform in front of the lis-
tener, while recent findings show that the listener’s head has
a tendency to undershot the target speaker’s position [3].
Beamforming algorithms help improving speech intelligibility
and sound quality [4], however, in reverberant multi-speaker
scenarios, the performance of algorithms such as the minimum
variance distortionless response (MVDR) filter is reduced [5].
More recently, audio beamforming was developed using neural

This work was supported by the Robust AI for SafE (radar) signal
processing (RAISE) collaboration framework between Eindhoven Univer-
sity of Technology and NXP Semiconductors, including a Privaat-Publieke
Samenwerkingen-toeslag (PPS) supplement from the Dutch Ministry of Eco-
nomic Affairs and Climate Policy.

networks (NN), end-to-end [6] or estimating signals fed into
a beamforming filter [7]. Such approaches usually do not take
multi-speaker scenarios into account, limiting its application,
or employ additional sensors (e.g., cameras) for guiding the
beam, which can be prohibitive for most hearing aid devices.

Inspired from the findings of [3] regarding the presence
of an undershot angle between listener’s head and speaker
direction, we propose a speaker selection mechanism for the
training of beamforming neural networks. The mechanism
teaches the model to focus on the target speaker based on
the smallest undershot angle, requiring only audio information
during inference. To the best of our knowledge, this is the
first study to propose a solution for this task that neither
requires the listener to face the speaker at any time nor relies
on additional sensors. Through acoustic simulations, we show
that a neural network trained with the mechanism is able to
outperform the baseline model, trained without it, and the
MVDR filter [8]. We also show that the proposed algorithm
is robust to changes in number and position of speakers, a
significant progress toward solving the cocktail party problem.

II. PRELIMINARIES

The problem we tackle consists of multi-microphone audio
beamforming in a multi-speaker scenario, where the micro-
phones are positioned as of simulating hearing aid devices
wore by a listener. N speakers and a listener are randomly
positioned in a reverberant room. The listener can look toward
one of the speakers directly, or with an undershot azimuth
angle. For generality, we also consider the overshot (though we
prioritize the term undershot for readability) when the listener
looks further than the desired speaker angle. Our objective is
to extract the clean reverberant speech of the desired speaker
only using audio information.

An example can be seen in Fig. 1, where in a reverberant
room, a listener L looks toward a speaker S2 with an undershot
angle θu. In this case, S2 is the desired speaker while S1

is undesired. The undershot angle can be described in terms
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Fig. 1: Example scenario of the considered problem. The
indication arrows point out to: (i) listener L; (ii) speaker S1;
(iii) speaker S2; (iv) wall; and (v) reverberation.

of the listener’s head center axis angle θh and the angle of
the desired speaker θS2

(θS1
for the undersired speaker), in

relation to the listener’s x-axis, as |θu| = |θh − θS2
|. In this

example, the objective would be to extract the reverberant
speech of speaker S2 as received by a reference microphone.

The output ym(t) of each microphone m is defined by the
speech fragment sn(t) of speaker n, convolutioned (∗) with
a room impulse response (RIR) gnm(t) from speaker n to
microphone m, summed for all speakers. This is described as

ym(t) =
∑
n

sn(t) ∗ gn,m(t). (1)

Our objective is to extract the desired (subscript d) reverberant
speech at the reference microphone sn=d(t) ∗ gn=d,m=ref.(t),
solely given microphone outputs ym(t), ∀ m ∈ [1, ..., M ],
while speech coming from other speakers is treated as interfer-
ence. Additional noise is not considered in order to facilitate
the demonstration of the proposed method.

The system operates in the time-frequency domain, where
Ym(t, f) and Sn(t, f) are, respectively, the short-term Fourier
transform (STFT) of the microphone outputs and the reverber-
ant speech signal sn(t) captured by a reference microphone.

III. SPEAKER SELECTION MECHANISM

We propose a speaker selection mechanism (SSM) for al-
lowing a neural network to learn which speaker is desired, and
beamform toward it. This approach can be applied to a NN that
is: estimating the steering vector of a classical beamforming
algorithm, like the MVDR filter [7]; estimating the position
of the target speaker [9]; estimating a time-frequency mask,
which can be applied to the microphones’ outputs via filter-
and-sum operation [6]; among other uses. In this work, we

Algorithm 1 Speaker selection mechanism for two speakers

1: procedure SSM(positions, |θmax
u |)

2: Input: 2-dimensional position of listener [aL, bL] and
speakers

[[
aS1 , bS1

]
,
[
aS2 , bS2

]]
of an audio utterance

3: Parameter: Maximum undershot angle |θmax
u |

4: Output: Index of desired speaker
5: Calculate the speakers’ angles relative to the lis-

tener’s x-axis:

θS1
= atan2(bS1

− bL, aS1
− aL)

θS2
= atan2(bS2

− bL, aS2
− aL)

6: Determine the admissible range for θh:
7: Ensure that the listener’s head angle is always closer than

|θmax
u | from both speakers:

θmin
h = min{θS1

, θS2
} − |θmax

u |

θmax
h = max{θS1

, θS2
}+ |θmax

u |

8: Sample the listener’s head angle:

θh ∼ Uniform(θmin
h , θmax

h )

9: Calculate the undershot angles for each speaker:

|θu1| = |θh − θS1 |

|θu2| = |θh − θS2 |

10: Select the speaker:
11: if |θu1| < |θu2| then
12: Return 1 ▷ Speaker 1 is desired
13: else
14: Return 2 ▷ Speaker 2 is desired
15: end if
16: end procedure

choose to validate the proposed mechanism with an end-to-end
neural network that estimates a multi-channel time-frequency
mask for beamforming. Nevertheless, we assume that we have
access to all microphones’ outputs in the array, and that the
position of listener and speakers is known during training.

The SSM works as follows. For each training utterance,
we calculate the absolute value of the undershot angles for
all speakers. We then identify the speaker that results in
the smallest absolute undershot angle and set it as desired.
Moreover, the desired speaker is used as a target for calculating
the loss, during training, for that specific utterance. The target
speaker in the loss function changes dynamically according
to the smallest undershot angle. We consider the criteria of
smallest undershot angle for changing desired speaker, but
the movement of the head could be more explored, being out
of scope for this paper. Alg. 1 details the speaker selection
mechanism for an example situation of two speakers. Notice
that, in inference mode, there is no need to provide any
information regarding position. The NN-based system trained
with the proposed mechanism is able to beamform toward the
desired speaker solely with audio information.
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Fig. 2: End-to-end beamforming neural network training system employing speaker selection mechanism.

Differently from [10], our approach does not require the
listener to face the target at any moment, and only one neural
network is used. We also don’t take visual cues into account,
e.g., as considered in [7], since we assume that the neural
network can obtain spatial information from multi-microphone
audio features. Next, we describe the model and simulation
framework for evaluating the proposed SSM.

IV. MODEL AND SIMULATION FRAMEWORK

We evaluate the SSM with an end-to-end neural network
beamforming system, as per Fig. 2. A simulation environment
outputs multi-microphone recordings, which are preprocessed
and fed into the NN model in the time-frequency domain.
The output of the neural network consists of a complex multi-
channel mask Hm(t, f), ∀m ∈ [1, ..., M ], applied to the
microphone recordings with a filter-and-sum operation, as

Ŝd(t, f) =
∑
m

Ym(t, f) ·Hm(t, f). (2)

The model description is given in the following.

A. Audio beamforming model

We consider a NN-based beamforming approach with filter-
and-sum, similar to [6], but we simplify the model by using
only real-valued operations, with a real-imaginary split at the
input, concatenating both in the frequency axis. Consequen-
tially, the output is recombined as a complex mask. Further on
reducing the model’s complexity, the convolutions are defined
only in the frequency axis, as we did not observe significant
performance difference against kernels in both frequency and
time axis. The NN model is depicted in Fig. 3.

The model is trained to maximize the scale-invariant signal-
to-distortion ratio (SI-SDR) of filtered microphone outputs
in relation to the desired speaker’s reverberant speech at the
reference microphone. Differently from scale-invariant signal-
to-noise ratio used in [6], we consider the SI-SDR since it is
a lower bound to both SDR and SNR [11].

For comparison, we train the same model twice. First,
trained with the SSM for speaker-aware beamforming. Second,

without using the proposed mechanism, by always setting a
random speaker as the desired target, creating a NN baseline
for the task that we are aiming to solve – beamforming
on multi-speaker scenarios with undershot angles. We also
compare it to an ideal MVDR filter, obtained as [8]

wMVDR(f) =
Φ−1

uu (f)Φss(f)

Trace(Φ−1
uu (f)Φss(f))

r, (3)

where Φuu(f) and Φss(f) are the power spectral density
matrices of undesired speech and desired speech, respectively,
and r is a one-hot vector representing the reference channel.
For the considered ideal case, Φuu(f) and Φss(f) are known.
The weights are applied to the multi-microphone outputs as
Ŝd(f) = wMVDR(f)

HY (f). Additionally, the ideal MVDR
is also equivalent to the optimal case for when MVDR
parameters are calculated with NNs, e.g., [7].

B. Acoustic simulation setup

We simulate a reverberant room with four microphones and
two speakers. First, a rectangle-shaped room of size 5.15 x
3.75 x 2.65 m is defined. Although the room size is fixed, the
time it takes for sound pressure to reduce by 60 dB (T60) is
defined over a variable range, assuring generality. The room
impulse response (RIR) for each speaker in relation to each
microphone is generated using gpuRIR [12]. We set up the
simulation as described in the following.

Four omnidirectional microphones are positioned similarly
as in a hearing aid device wore by a person. First, we
(randomly) define the position of the listener, and we assume
a radius equal to 0.15 m, which is similar to the average head
breadth of an adult person. Two groups of two microphones
are positioned in the east-most point and equivalently at the
west-most point. The microphones within each group are split
from each other by 0.50 cm, and positioned at the same height,
with the front left microphone taken as reference.

Moreover, the speakers are randomly positioned following a
few constraints. The first constraint is that the speakers cannot
be closer than 1.00 m from the listener, and they cannot
be closer than 1.00 m from each other. At the moment of
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Fig. 3: Schematic of the considered neural nerwork model. The number in each layer indicates output channels. Cenc consist
of Conv2D encoder layers with BatchNorm2D and ReLU functions in all layers. A Tanh is applied to the encoder output to
bound values, ensuring stable inputs for the recurrent layers. G layers are gate recurrent units (GRUs), and L is a linear layer.
Cdec are Conv2D.T decoder layers, with BatchNorm2D and ReLU activation in all layers but the last, without normalization
or activation. All Cenc/dec kernels are (8,1) with stride (2,1) and padding (3,0). Upper lines represent skip connections.

TABLE I: Variable parameters and ranges for the acoustic
simulation.

Parameter Min. value Max. value
T60 (s) 0.20 1.00

SNR (dB) -10.00 20.00
Listener/speaker height (m) 1.50 1.95

Undershot angle (°) -30 +30

positioning, the absolute angle difference of both speakers in
relation to the listener must be of at least 45 degrees, avoiding
that a speaker would be too close or behind the other speaker.
Both listener and speaker positions are limited to be distant
from any wall at least twice the head breadth value. The
listener and speaker points are positioned with a height ranging
from 1.50 and 1.95 m, similar to most adult humans’ height.
When all speakers and listener are positioned, the head angle
of the listener is defined by randomly rotating the center of the
two groups of microphones in the azimuth direction, but not
exceeding a maximum undershot of 30 degrees. The maximum
undershot constraint provides a better sense of reality, as a
listener would not look too far from the desired speaker. Ad-
ditionally, the signal-to-noise ratio (SNR), calculated with the
mixed utterance (representing noisy signal) against the desired-
speaker-only utterance (representing signal) is randomly varied
from -10 to 20 dB. Note that speech traces are combined such
that there is minimum silence period, but still sounding natural.
Table I summarizes the variable parameters in the simulation.

C. Data

We use the LibriTTS dataset [13] for the acoustic simula-
tion. For each speaker, traces of speech are randomly selected
and resampled to 16 kHz, combined until a duration of 10
seconds is reached, with a random fade-in and fade-out of 0.05
to 0.20 seconds. Each speech trace is multiplied by a gain,
randomly defined from -3 to 3 dB. Both speech utterances
are adjusted to avoid clipping when combined. Each utterance
is then convolved with the RIR referent to that speaker and
microphones, which are obtained as described in Section IV-B,
according to (1), resulting in the microphone outputs.

Moreover, the STFT operation is applied to the microphone
outputs for 256 samples, with a Hann window of size 256
and a hop of 128 samples. The STFTs used as input to the
neural network are normalized by their mean and standard

deviation. Real and imaginary parts are then concatenated in
the frequency axis, forming the input to the neural network.
For training, the ‘train-clean-360’ subset of LibriTTS is used,
with 360 hours of raw audio. The evaluation is performed on
the ‘test-clean’ set, with approximately 8.6 hours of data.

V. RESULTS AND DISCUSSION

We train the neural network model described in Sec-
tion IV-A with and without the SSM proposed in Section III,
for N = 2 speakers, according to the acoustic parameters
defined in Section IV-B, with the data mentioned in Sec-
tion IV-C. We also consider the (ideal) MVDR filter as a
baseline, calculated as in (3) with access to all separate
(reverberant) signals, i.e., always beamforming in the target
speaker direction. In Table II, we show the average values
over the ‘test-clean’ set of LibriTTS of short-time objective
intelligibility (STOI) [14], perceptual evaluation of speech
quality (PESQ) [15], and SI-SDR, for the mixed audio at the
reference microphone and the filtered signals.

We can see from Table II, for N = 2 speakers, that
the use of the SSM in training can significantly increase
the performance of the neural network-based beamforming
model, for all considered SNRs. As expected, the proposed
mechanism is able to teach the network which speaker to target
at each utterance. When the model is trained without such
information, a lower signal-to-noise ratio condition causes the
performance to be drastically affected since the NN model
“confuses” the choice of speaker, to the point of achieving
lower metrics than the mixed signal. We can see that, as the
SNR of the speech combination increases, the NN without
SSM becomes able to separate desired from undesired speaker,
indicating that it is focusing on the higher-amplitude signal,
a major feature in the audio combination. However, even for
higher SNR levels, the performance of the baseline NN is
insufficient, as the model trained with SSM almost always
forms an upper bound for the NN’s performance.

Moreover, the MVDR filter is outperformed by the NN with
SSM training for almost all cases. The baseline NN provides a
similar or better performance than the MVDR filter at higher
SNRs. That is due to the MVDR formulation, which assumes
an acoustic scene with anechoic conditions, while the NNs
can learn to suppress the effects of reverberation. For higher
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TABLE II: Average STOI, PESQ, and SI-SDR over the ‘test-clean’ LibriTTS set for the mixed audio and the NN-filtered
speech, trained with and without SSM for two speakers and evaluated for N = 2 and N = 3 speakers.

-10 dB SNR 0 dB SNR 10 dB SNR 20 dB SNR
N Method STOI PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR STOI PESQ SI-SDR

2

None (mixed) 0.384 1.237 -9.970 0.634 1.535 0.032 0.849 2.334 10.031 0.958 3.431 20.030
MVDR filter 0.447 1.322 -6.445 0.682 1.740 2.043 0.838 2.430 5.109 0.868 2.707 1.866

NN 0.346 1.219 -11.172 0.629 1.532 -0.007 0.861 2.430 10.913 0.963 3.617 20.790
NN + SSM training 0.526 1.366 -1.608 0.736 1.851 5.012 0.891 2.790 12.541 0.963 3.746 20.227

3

None (mixed) 0.313 1.237 -9.990 0.580 1.465 0.016 0.828 2.211 10.017 0.954 3.368 20.018
MVDR filter 0.371 1.285 -7.314 0.634 1.626 1.786 0.827 2.327 5.690 0.872 2.714 2.238

NN 0.299 1.225 -10.582 0.583 1.468 0.156 0.845 2.323 11.025 0.960 3.569 20.740
NN + SSM training 0.400 1.253 -6.311 0.669 1.652 3.361 0.874 2.621 12.222 0.961 3.703 20.273

SNR, the reverberation of the desired speaker has more energy,
contaminating the direct path and deteriorating the MVDR
performance, which can be noticed in terms of SI-SDR.

We also check the robustness of the proposed mechanism
against changes in the environment by re-evaluating all meth-
ods for a different acoustic scenario. Now, we consider a more
challenging case of N = 3 speakers, with minimum distance
between listener to speakers, and speakers to speakers, of
0.5 m, and minimum absolute angle difference of speakers in
relation to the listener center axis of at least 20 degrees. All
other simulation parameters are kept as before. The training
of the neural networks is not re-executed and their parameters
are kept exactly the same as for N = 2 speakers.

As shown in Table II, with N = 3 speakers, the proposed
SSM is robust to changes in the number of speakers and
positioning, even at a very low SNR (-10 dB), outperforming
the baselines for almost all cases. As the target speaker is
successfully extracted, all other speech traces are filtered out,
independently of number of undesired speakers. This gives
a strong indication that the NN trained with SSM treats all
undesired sound homogeneously, as if it was noise. When the
SNR is low, the NN without SSM again fails to extract the
desired speech, however, it manages to beamform toward the
desired speaker under higher SNRs conditions, given the easier
settings. The MVDR filter is again affected by the presence of
reverberation, which becomes clear with the obtained SI-SDR
at the highest considered SNR, as previously explained.

VI. CONCLUSION

We proposed a speaker selection mechanism for the training
of a neural network model on the task of audio beamforming.
The SSM dynamically changes the target speaker in the
loss function, at every utterance, focusing on the closest
speaker to the listener’s head center axis. Through acoustic
simulations, the neural network model trained with SSM was
able to outperform the baseline NN model (trained without
it) and the (ideal) MVDR filter, achieving significantly higher
performance metrics. Additionally, we showed that the SSM is
robust to changes in the acoustic scene – number of speakers
and positioning. The proposed speaker selection mechanism
represents a leap toward the solution of the cocktail party
problem. For future work, we suggest the employment of the
SSM in different NN-based beamforming systems, like the
estimation of classical beamforming filters, and to the solution
of multi-speaker source localization problems.
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