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Abstract—Higher-order Ambisonics (HOA) offer a flexible way
to represent 3D sound field information, which makes them
suitable for many applications, e.g., virtual reality (VR) and
teleconferencing. However, the HOA order which dictates spatial
accuracy is practically constrained by the number of microphones
and loudspeakers. This work aims to increase the accuracy of the
sound field representation by predicting missing HOA coefficients
for higher orders. To achieve this, an existing deep learning-based
upscaling method utilizes fully connected feedforward neural
networks. Our novel approach replaces these fully-connected
structures with gated recurrent units (GRUs), which allow to
better leverage spatio-temporal dependencies inherent in HOA
coefficients. Simulation experiments show that when trained
under similar conditions, the proposed model outperforms the
previous one by achieving lower mean squared error (MSE)
between target and predicted HOA coefficients across various
upscaling orders. In further experiments, we train the proposed
model on synthetic sinusoidal data and evaluate the performance
on test sets of complex real-world recordings. The superior per-
formance of the proposed model in these experiments indicates
its value in scenarios where obtaining real acoustic scene data
with high orders is impractical.

Index Terms—Audio signal processing, higher-order Ambison-
ics, recurrent neural networks, upscaling

I. INTRODUCTION

Spatial audio creates realistic acoustic environments by
placing sound sources in three-dimensional space. This en-
ables an immersive listening experience, particularly in virtual
reality (VR), where these environments are synchronized with
the visual effects of the virtual world. The pioneering work
of Gerzon [1] laid the foundation for spatial audio technology
based on Ambisonics. A notable example is the Soundfield
SPS200 microphone, which can capture Ambisonics signals
for various applications [2]. Recent advances in multi-channel
audio recording and playback systems have made the transition
from Ambisonics to higher-order Ambisonics (HOA) feasible,
which enhances spatial resolution and enables more accurate
sound field representation [3]–[5].

The HOA order is directly related to the accuracy of the
sound field representation, but it is fundamentally limited by
the number of microphones or loudspeakers in the recording
or reproduction setup, respectively [6], [7]. A low HOA
order offers only low spatial selectivity, whereas high orders
require a large number of microphones to capture that may be
impractical in many applications. Consequently, sound fields
can only be reproduced with little error within a specific
reproduction area known as the physical sweet spot, whose
size depends on the HOA order and frequency [8], [9].

To enhance sound field representation, parametric ap-
proaches such as directional audio coding (DirAC) [10] model
sound fields based on the direction of arrival (DOA) and
diffuseness. Many studies focus on artificially increasing HOA
orders by leveraging sparsity and assuming few incident sound
directions [11]–[14]. Other methods specifically concentrate
on performing upscaling on sampled spherical grids [15], [16].

Routray et al. [17] proposed a deep learning model that uses
fully connected feedforward neural networks for HOA upscal-
ing, which eliminates the need for prior source direction esti-
mation. In this work, we adopt their framework and introduce
a novel approach by replacing the fully connected structures
with gated recurrent units (GRUs). This modification allows
us to capture spatio-temporal dependencies inherent in HOA
coefficients more effectively. We demonstrate the proposed
model’s generalization capacity by training it on an artificially
generated set of sinusoidal and harmonic samples, and evaluate
the performance on test sets of complex real-world recordings.

We compare the proposed model to the one presented in [17]
based on performance. First, we calculate the average mean
squared error (MSE) for both models by using given test sets.
Second, we illustrate sound field reproduction performance
through an example that consists of recorded musical instru-
ments. Finally, to evaluate accuracy in detecting sound source
directions, we consider the steered response power (SRP) map
by using a sample from the test set as another example.

II. THEORETICAL BACKGROUND

A. Plane-Wave Decomposition

A complex-valued sound pressure field in the frequency
domain can be expressed as the sum of individual unit-
amplitude, single-frequency plane-wave terms of the form
e−ik·r. Assuming that the sound field is composed of in-
finitely many plane waves with directional amplitude density
x(k, θq, ϕq), the overall sound pressure can be formulated as
the surface integral [9], [18]

p(k, r, θ, ϕ) =

∫ 2π

0

∫ π

0

x(k, θq, ϕq)e
−ik·r sin θqdθqdϕq, (1)

where the wave vector is given by k = −(k, θq, ϕq) and the
position r = (r, θ, ϕ) is described in spherical coordinates
with radius r, inclination angle θ, and azimuth angle ϕ. Here,
k = 2πf

c denotes the wavenumber with f representing the
physical frequency and c the speed of sound. The symbol i
denotes the imaginary unit.
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Although it is defined for plane waves, (1) is also applicable
to point sources in the far field, where their distribution can be
assumed to be equivalent to that of plane waves [6]. Since the
directional amplitude density is defined on the unit sphere, it
is appropriate to express it in terms of a spherical harmonics
expansion according to [9]

x(k, θq, ϕq) =

∞∑
n=0

n∑
m=−n

xnm(k)Y m
n (θq, ϕq), (2)

where Y m
n (θq, ϕq) are the spherical harmonics and xnm(k) are

the corresponding weights with order n = (0, 1, 2, . . . ) and
degree m = (−n, . . . , n), which adheres to the Ambisonics
channel number (ACN) format [19]. Inserting (2) into (1) and
expressing individual plane-wave terms as a summation of
spherical harmonics yields an expression of the sound pressure
field as a series [9]

p(k, r, θ, ϕ) =

∞∑
n=0

n∑
m=−n

4πinxnm(k)jn(kr)Y
m
n (θ, ϕ) (3)

with the spherical Bessel function jn(kr). The time-domain
representation of xnm(k) is referred to as the HOA signal,
which provides a more abstract representation of the direc-
tional amplitude density, as it does not depend on the source
direction (θq, ϕq) [8]. Note that both spherical harmonics
and HOA representations are defined as complex-valued func-
tions. Thus, the pressure field is given as the real part of (3).
For simplicity, we omit the explicit notation and consider all
quantities as real-valued signals in the following discussion.

B. Band Limitation of Higher-Order Ambisonics Signals
As mentioned in Sec. I, the challenge of representing a

sound field through HOA lies in the fact that the coefficients
are only available up to a finite truncation order N . Conse-
quently, (3) is merely an approximation in practice, i.e.,

p(k, r, θ, ϕ) ≈
N∑

n=0

n∑
m=−n

4πinxnm(k)jn(kr)Y
m
n (θ, ϕ). (4)

For orders n > kr, the magnitude of the normalized spheri-
cal Bessel function |4πinjn(kr)| in (3) decreases significantly,
which causes the individual summation terms to vanish. As a
result, the approximation (4) is valid with minimal error within
the physical sweet spot given by a radius of approximately
r < N

k [9].
Using matrix notation and considering discrete sound

sources, the relationship between band-limited HOA coef-
ficients and direction-specific amplitudes can be expressed
as [11], [13]

xnm(t) = Y x(t), (5)

where t denotes the discrete time index. The spherical har-
monics evaluated at all sound source directions are stored in
an (N + 1)2 ×Q matrix given by

Y =


Y 0
0 (θ1, ϕ1) Y 0

0 (θ2, ϕ2) . . . Y 0
0 (θQ, ϕQ)

Y −1
1 (θ1, ϕ1) Y −1

1 (θ2, ϕ2) . . . Y −1
1 (θQ, ϕQ)

...
...

. . .
...

Y N
N (θ1, ϕ1) Y N

N (θ2, ϕ2) . . . Y N
N (θQ, ϕQ)

 (6)

with Q representing the number of sound sources in the sound
field. The direction-specific amplitudes are represented as a
vector with length Q,

x(t) = (x(t, θ1, ϕ1), x(t, θ2, ϕ2), . . . , x(t, θQ, ϕQ))
T, (7)

where (·)T denotes transposition of a vector. The coefficient
vector of length (N + 1)2 is expressed as

xnm(t) = (x0,0(t), x1,−1(t), x1,0(t), . . . , xN,N (t))T. (8)

III. HIGHER-ORDER AMBISONICS UPSCALING

We consider a processing framework for sequential signals,
where each signal consists of a single frame with Nt time
samples. The problem addressed in this work is to find a block
of multiple HOA coefficients of order N̂ from a first-order
Ambisonics representation, i.e.,

x(1)
nm(t)

Upscaling−→ x̂(N̂)
nm(t) with N̂ > 1. (9)

Since the input vector contains 4 coefficients and the target
vector (N̂ + 1)2 coefficients, the problem of HOA upscaling
involves predicting (N̂+1)2−4 missing coefficients to obtain
the N̂ -th order HOA signal. In the following, we propose
a modification to an existing upscaling framework [17] by
utilizing recurrent neural networks instead of fully connected
layers for this task, and elaborate on the training data.

A. Proposed Framework

It is evident that the number of unknown coefficients relative
to the known coefficients increases quadratically as the target
order N̂ grows. Therefore, it seems reasonable to consider a
sequential approach similar to that proposed in [17].

Fig. 1a illustrates the block diagram of the adopted HOA up-
scaling framework. Our novel approach involves L = N̂−1 in-
dependently trained recurrent stages, each of which increments
the HOA order by one. Each stage l follows the same training
procedure: It takes the l-th order input x

(l)
nm(t) ∈ R(l+1)2 ,

predicts the missing coefficients x̃
(l+1)
nm (t) ∈ R(2l+3) required

for generating the next-order HOA signal, and concatenates
these predicted coefficients with its input vector to form
the predicted signal x̂

(l+1)
nm (t) ∈ R(l+2)2 . The processing is

performed iteratively, i.e., the output of stage l becomes the
input of stage l+ 1 until the target HOA order N̂ is reached.

Each recurrent stage of the model is selected as a GRU
followed by a fully connected output layer, chosen for their
simpler architecture and fewer parameters than those of fully
connected structures in [17], which reduce the risk of overfit-
ting [20]. Additionally, the use of GRUs allows for effective
memory retention over longer observation periods, even with
shorter block lengths. This capability is particularly beneficial
when dealing with relatively stationary signals, where source
positions do not change abruptly. In such scenarios, GRUs
can be interpreted as providing smoothing across both time
and spatial information in the HOA coefficients, which makes
them more suitable than simple fully connected layers for
capturing spatio-temporal dependencies. Fig. 1b illustrates the
structure of each proposed recurrent stage within the upscaling
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Recurrent
Stage 2

Recurrent
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(a) Block diagram of sequential HOA upscaling.

x(l)
nm(t) GRU

Recurrent Stage l

x̃(l+1)
nm (t)

x̂(l+1)
nm (t)

(b) Structure of recurrent stage l.

Fig. 1: Architecture of the considered HOA upscaling system.

framework. Each GRU in these stages is configured as unidi-
rectional, i.e., each time step’s output depends solely on the
current and previous time steps. This configuration allows the
GRU model to be suitable for online applications. The GRU
consists of a single layer that takes (l+1)2 inputs and produces
Nh outputs per time t, where Nh denotes the number of
features in the hidden state. The fully connected output layer
performs a linear transformation that maps the GRU’s output to
x̃
(l+1)
nm (t) ∈ R(2l+3) with a linear activation. The GRU hidden

size was selected experimentally as Nh = 128. Inference
based on the upscaling framework is performed in the same
sequential manner as previously described.

B. Data Generation

The proposed approach will be tested for practical usability,
which requires data. Since real-world data are not always avail-
able in sufficient amounts, this study explores scenarios where
data are generated synthetically. Several plausible variants for
data generation are presented in this section and their impact
on model performance will be compared in the evaluation.

First, we generated HOA signals by using (5), where indi-
vidual sound stimuli were randomly selected from a subset
of the EBU-SQAM database [21]. This subset consists of
recordings, which contain 6 tonal signals, 36 musical in-
struments, 4 opera pieces, and 6 speech excerpts. From this
subset, we created 2 × 105 training samples by using only
the speech signals and another 2× 105 samples that included
the remaining types of signals. Each generated acoustic scene
consists of 1 to 5 individual sound sources randomly selected
from a uniform distribution, with random amplitudes in the
range uq ∈ (0.1, 1) with source index q. Each source emits
plane waves from a single, random direction θq and ϕq within
the angles θq ∈ (0, π/2) and ϕq ∈ (0, π), respectively. These
angle ranges are defined identically to those described in [17].

We generated another 4 × 105 acoustic scenes, each con-
sisting of 1 to 5 artificial sinusoidal sources, without record-
ings, unlike the previously mentioned dataset. Each sinusoidal
source in an acoustic scene has a random amplitude in range
uq ∈ (0.1, 1), a phase shift ∆αq ∈ (0, 2π), and a frequency

fq ∈ (200, 1500)Hz. This frequency range was motivated
by the fundamental frequencies of typical (non-bass) musical
instruments and speech signals. The plane waves from each
source arrive from directions θq and ϕq within their respective
ranges. This simple dataset created a controlled environment
that allowed for quick adjustments of various configurations
and enabled us to test their impact on model performance.

For the evaluation, we created two test sets: One with 8×104

speech signals and the other with 8 × 104 tonal components,
musical instruments, and opera samples from the EBU-SQAM
subset. As in the training set based on the EBU-SQAM subset,
we used the same parameters to generate the acoustic scenes:
Each scene consists of 1 to 5 sources with random amplitudes
and source directions within the same specified ranges.

Furthermore, considering the inherent tonality of musical
instruments and speech signals [22], we introduced harmonics
into the sinusoidal training set to improve the generalization of
the proposed model. To achieve this, we added four harmonic
components to approximately half of the sinusoidal scenes by
incorporating the original signal along with integer multiples
of the fundamental frequency and an exponential decay factor.
This modified the source signal q as follows:

x(t, θq, ϕq) = uq

4∑
κ=0

e−κβq sin((κ+ 1)Ωqt+∆αq) (10)

with normalized angular frequency Ωq = 2π
fq
fs

and a decay
factor of βq = 1. Thus, we created the third training set by
using (10). The effect of this set will be discussed in Sec. IV.

In all generated datasets, each individual training sample
represents a unique acoustic scene, with a frame size Nt = 512
at a sampling rate of fs = 44.1 kHz. All frames are processed
by the networks independently.

IV. EVALUATION

We consider the model from [17] as the baseline and
compare it with the proposed model. Each model was trained
sequentially up to order N̂ = 6. The baseline model was
trained only on the EBU-SQAM subset, whereas the proposed
model was trained on three different training sets: EBU-SQAM
subset, sinusoidal dataset, or sinusoidal dataset with harmonics
according to (10). During training of each individual stage
for upscaling from order l to l + 1, we used the MSE loss
function to compare predicted HOA signals x̃

(l+1)
nm (t) with

their corresponding targets x̆(l+1)
nm (t). The batch size was set to

64, and the learning rate was configured at 10−4. We employed
Adam optimizer for stochastic optimization.

When training the baseline model, we closely followed the
parameters from the original paper [17] to ensure consistency
and comparability. Each stage in the baseline model was
trained for 300 epochs based on convergence patterns indicated
by stabilized training and validation loss. In contrast, the
recurrent stages in the proposed model on all datasets achieved
convergence within a maximum of 100 epochs under similar
conditions. To monitor convergence patterns and modify the
learning rate accordingly, we employed a scheduler with a
patience of 10 epochs.
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Fig. 2: MSE on orchestra and speech test sets for the baseline
model ( ), and the proposed model trained on EBU-
SQAM subset, sinusoidal data, or sinusoidal data with harmon-
ics (as defined in (10)) ( / / ), respectively.

A. Deviation of Higher-Order Ambisonics Coefficients

To compare the overall performance of the models, we first
examined HOA prediction accuracy across 8 × 104 orchestra
and 8 × 104 speech scenes used as test sets (as detailed in
Sec. III-B). We computed the average MSE between the 2l+3

upscaled coefficients x̃
(l+1)
nm (t) and the targets x̆

(l+1)
nm (t) for

each upscaling order l + 1 until the final order N̂ , i.e., for
l = 1, 2, . . . , N̂−1. The target signal was calculated using (5).

Fig. 2 illustrates performance of all models on both test sets
for different upscaled HOA orders. A significant difference in
performance is observed when comparing the baseline model
with the proposed model trained on the same EBU-SQAM
subset. For example, the MSE is reduced by over 10 dB
at upscaling order 2 for both test sets. This discrepancy is
expected because the proposed model leverages the inherent
spatio-temporal dependencies in HOA signals more effectively.
In all cases, errors increase with higher upscaling orders, while
the proposed model’s performance remains better than that of
the baseline model across all considered upscaling orders.

When evaluating the proposed model trained on sinusoidal
training sets, we observe a significant performance improve-
ment by incorporating harmonics (according to (10)), com-
pared to training solely on sinusoidal data. Interestingly, the
latter variant performs worse than the baseline starting from
upscaling order 4 for both the speech and orchestra test sets.
This indicates that training exclusively on sinusoidal data is
not sufficient for effective generalization on the EBU-SQAM
subset, and incorporating harmonics enhances the model’s
ability to represent the more complex test sets.

Another advantage of using a sinusoidal training set with
harmonics becomes evident when comparing the proposed
model trained on harmonics to the one trained on the EBU-
SQAM subset. The results for the orchestra test set are on-
par, while those for the speech test set are nearly similar, with
the difference in the latter case bounded by approximately

-1 0 1
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0

1

rx (m)

r y
(m

)

(a) Target

-1 0 1
rx (m)

(b) Baseline

-1 0 1
rx (m)

(c) Proposed

Fig. 3: Reproduced sound fields with HOA of order 6 us-
ing (4), with target, baseline and proposed model coefficients.

3 dB. Overall, this demonstrates that training on sinusoidal
data with harmonics achieves similar performance without
requiring prior recordings of sound sources. This approach
could be particularly beneficial in situations where recording
sound scenes may be impractical. In the following, we will
focus exclusively on this proposed model variant.

B. Sound Field Reproduction

For better interpretation of the results, we selected a sample
from the test set and visualized sound field reproduction per-
formance at HOA of order 6. Fig. 3 illustrates the reproduced
sound fields which feature three musical instruments in the far
field: A grand piano, an oboe, and a violoncello, with their
plane waves arriving at the center from directions (θ1, ϕ1) =
(π6 ,

π
18 ), (θ2, ϕ2) = (π4 ,

17
18π), and (θ3, ϕ3) = ( 7

18π,
π
2 ),

respectively. The reproduced sound fields were simulated by
using (4) over an area of 4 m 2, with the target signal, baseline
model predictions, and proposed model predictions inserted
as HOA signals. We observe the sound field in the horizontal
plane, i.e., at θ = π

2 , and at a fixed time t = 210.
This chosen scene creates a complex sound field due to wave

interference within the reproduction area. When reproduced
with HOA of order 6, many aspects of this complexity can
be accurately represented, as evident in the target signal (see
Fig. 3a). Comparing the reproduced sound fields from both
models reveals that the baseline model captures only a portion
of the overall sound field (see Fig. 3b), while the proposed
model’s results closely align with the target (see Fig. 3c).
This indicates that the proposed model successfully reflects
the larger physical sweet spot through the higher HOA order.

Remarkably, even with the proposed model, some waves
appear slightly rotated clockwise. This phenomenon can be
attributed to errors in the resulting coefficients, where certain
orders leak into others, which alters spatial information.

C. Steered Response Power Maps

Another important aspect of spatial information about a
sound field is the sound source directions, which can be visu-
alized with HOA through signal energy distribution via SRP
maps [8]. To compare model performance in detecting source
directions, we considered the same exemplary sound field from
the test set described in Sec. IV-B, and created four SRP
maps based on this sound field: One using initial first-order
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Fig. 4: SRP maps created using first-order Ambisonics input,
target HOA signal at order 6, and predicted HOA coefficients
by the baseline and proposed models at order 6 for an
exemplary sound field from the test set. Ground truth sound
source directions are marked by triangles ( ).

Ambisonics coefficients as input of the models, one using the
target HOA signal at order 6, and two using predicted HOA
coefficients from both the baseline and proposed models at the
upscaling order 6.

Fig. 4 displays the resulting SRP maps. Due to strong
band limitation from the lower order of the initial first-order
Ambisonics, there is low spatial resolution that results in sig-
nificant spatial blur [8], which makes it difficult to distinguish
between sound sources. The map from the target signal at
order 6 exhibits an energy distribution with three distinct
peaks which correspond to the ground truth sound source
directions. The baseline model reflects only one of these peaks
and shows lower energy distribution for the remaining sound
sources. In contrast, the proposed model accurately captures
all three peaks, which demonstrates a high degree of spatial
directivity. However, both the target and proposed models still
exhibit some spatial blur due to the HOA band limitation.
For the proposed model, imperfect HOA estimations slightly
exaggerate this blur. Despite this effect, the overall energy
distribution with three distinct peaks is preserved.

V. CONCLUSION

We consider an existing deep learning framework for HOA
upscaling and propose using GRUs instead of fully connected
networks within this framework. Simulation experiments show
that leveraging spatio-temporal dependencies in HOA signals
more effectively through GRUs enhances model performance
in predicting missing coefficients for higher orders. The pro-
posed model outperforms the previous one when both are
trained on realistic data. In further experiments, we trained
the proposed model by using artificial sinusoidal data with
harmonics, which shows better performance than the previous
model trained on realistic data. This improvement indicates
that incorporating synthetic training samples could serve as a
suitable method for data augmentation. In resource-constrained
situations, e.g., when real scene training data are unavailable

or costly, the proposed model remains effective by achieving
good performance on complex real-world data of musical
instruments and speech. In future research, we aim to conduct
listening tests and incorporate parametric methods, e.g., DirAC
for a comparative analysis with our deep learning approaches.
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