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Abstract—In this work, a novel array-agnostic approach is
proposed for multi-channel speech presence probability (MC-
SPP) estimation. A neural architecture used in our previous
work for array-fixed MC-SPP estimation is adapted to accommo-
date a variable number of microphone channels and guarantee
permutation invariance of the inputs. Specifically, convolution
and Transformer-based layers are modified to perform channel-
wise spectral and temporal processing, followed by Mean Pooling
for channel fusion. Transform-Average-Concatenate layers are
inserted to effectively aggregate array-level information added
to channel-wise independent features. The previously proposed
modified minimum variance distortionless response beamformer
is then cascaded to produce spatially filtered outputs. Our bench-
marking results demonstrate that the proposed approach achieves
performance highly comparable to the array-fixed counterpart
on known array geometries, while generalizing better to unseen
array geometries. Notably, under microphone index permutation
conditions, our method significantly outperforms the array-fixed
approach, maintaining a much lower complexity in terms of
model size and MACs.

Index Terms—array-agnostic approach, multi-channel speech
presence probability, MVDR beamforming, Transform-Average-
Concatenate

I. INTRODUCTION

For a fixed microphone array with known geometry and
constant microphone spacing and number, most existing multi-
channel speech enhancement methods effectively reduce noise
and restore speech [1], [2]. These methods are widely used
in applications like hearing aids and voice communication
[3], [4]. However, since the fixed array cannot be modified,
specifically the spacing and the number of microphones, it
poses significant challenges for algorithm transplantation. To
address this issue, the array-agnostic method has recently
garnered considerable research interest [5]-[7].

One commonly used multi-channel speech enhancement
approach is the minimum variance distortionless response
(MVDR) beamforming [8] which can preserve the target
speech while minimizing the background noise [9]. To perform
MVDR beamforming, the noise power spectral density (PSD)
matrix and the steering vector are required. However, esti-
mating these statistics is particularly challenging in complex
acoustic environments, such as those with low signal-to-noise
ratios (SNR) and significant reverberation. To achieve accurate
statistics estimation, the multi-channel speech presence proba-
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bility (MC-SPP) [10] leverages spatial information to precisely
detect speech components, providing a soft decision for speech
presence and absence. Recently, to further enhance multi-
channel speech performance, deep neural networks (DNN5s)
have been employed to estimate the MC-SPP. This estimate
serves as a mask in a modified MVDR beamformer, resulting
in superior performance compared to baselines [11]. However,
since the DNN model is explicitly designed and trained with an
array-fixed geometry, DNN-based MC-SPP estimation cannot
be performed with agnostic arrays without retraining the model
for the specific geometry.

In this work, we extend our previously proposed array-fixed
approach [11] by introducing a new DNN model designed
to estimate the MC-SPP from unknown geometries. Firstly,
we introduce the Transform-Average-Concatenate (TAC) layer
[12], which can share information between channels in a
permutation-invariant manner, enabling the DNN model to
accommodate a variable number of microphone channels and
ensure input permutation invariance. Additionally, given the
high performance of the Transformer-based layers in [13]
for extracting time-frequency information, the T-Transformer
and F-Conformer are introduced. Therefore, the DNN model
consists of the convolution, TAC, and Transformer-based layer
to jointly process spatial and time-frequency information in
the agnostic array. Finally, Mean Pooling is employed for
channel fusion. Experiments were conducted on simulated
acoustic datasets, enabling us to benchmark performance on
both known and unseen array geometries. For evaluation, the
array-agnostic MC-SPP estimate is applied to guide modified
MVDR beamforming proposed in [11], and a set of evaluation
metrics is used to evaluate our proposed method performance,
including speech enhancement performance and model com-
plexity.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Given a microphone array with arbitrary geometry, the
observed signal in a noisy and reverberant environment, in
the short-time Fourier transform (STFT) domain, is given by

y(k, 1) =x(k, 1) +x.(k,1) + n(k, 1), (1)

where & € [0,...,K — 1] is the frequency index,
I € [0,...,L — 1] is the time frame index, y(k,l) =
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[Y1(k,1),...,Yar(k,1)]¥, M is the number of microphones,
x(k,l) = [ 1(k, D)y ..., Xar(k,1))T is the direct speech,
x.(k,1) = [X1(k,1),...,Xn(k,1)]T is the reverberant
speech, and n(k,l) = [Ny(k,1),..., Nas(k,1)]T is the back-

ground noise. This work aims to extract the direct speech from
the observed signal so the signal model can be expressed by

y(kal) :X(kal)+v(k’l)7 (2

where v(k,1) = x,(k,1) + n(k,l) is the background interfer-
ence.

MVDR beamforming is performed to extract the target
speech, X1 (k,1), from the observed signal. Firstly, using the
covariance subtraction method [14], the steering vector can be
obtained by

@wﬁ(k,l)el
dk,l) = ———— 3
( ) ) e{{‘ﬁrz(k,l)ef ( )
where e; = [1,0,...,0]7 is an M dimensional selection

vector and ®,.,.(k,1)
PSD matrix.

Subsequently, the MVDR beamforming weights are given
by

= E[x(k,1)x(k,1)f] is the clean speech

‘I’_l
h(k, 1) = — 2o (R Dd(kD)
d¥ (k, 1)@,y d(k,1)
where ®,,(k, 1) = E[v(k,1)v(k,1)H] is the noise PSD matrix.
Finally, with the MVDR weights, the MVDR beamforming
can be performed as

X1 (k1)

4)

= b (k, 1)y (k,1), (5)

where X 1(k,1) is the enhanced speech, i.e., an estimate of the
desired speech signal at the first microphone.

III. SPP-BASED STATISTICS ESTIMATION

Since, in (4), @, (k,1) and @, (k,!) are required, the MC-
SPP [10] can be employed to estimate these statistics. With
two hypotheses: Hg represents speech absence and H; repre-
sents speech presence, the observed signal can be defined as:
y(k, 1) =v(k,l), and y(k,1) = x(k,1) + v(k,1), respectively.
The likelihood function of speech and noise can be derived
assuming that both components follow a multivariate Gaussian

distribution and are statistically independent [10].
In this way and using the Bayes’ theorem, the a posteriori

MC-SPP is given by
_ q(k,1) Bl N7
p“J)‘{1+ 1+£&JJ} ’
(6)

q(k, 1)

where p(k,1) = ply(k,1)|H4], q(k,1) is the a priori multi-
channel speech absence probability (MC-SAP), £(k,1) is the
a priort signal-to-noise ratio (SNR) which is defined as

[1+&(k,D)]exp [

and B(k,1) is defined as
6(ka l) = H(kv l)@;)l(kv l)(I’wﬂE(kv l)(I’;vl(kv Z)Y(ka l) 3

In [11], one DNN model is employed to estimate p(k,!)
to improve its estimation accuracy. During training, the actual

noise and clean speech are used to compute ¢(k,1), &(k,1),
and S(k,l) for the learning target. Then, at inference time,
the array-fixed MC-SPP estimate p(k,!) is obtained from the
output of the trained DNN model.

Given p(k,1), the noise PSD matrix estimate, ., (k,1),
and the clean speech PSD matrix estimate, ®.,,(k,[), are
recursively updated over time [11]. The so-obtained estimates
are then used in (4), to compute an estimate of the MVDR
beamforming weights, fl(k:,l). As shown in [11], a set of
modified MVDR weights h,, (k, 1) can be derived using p(k, 1)
as

h,, (k1) = p(k, )h(k,1). 9)

Like the conventional MVDR beamforming, the modified
MVDR weights, h,,(k, ), can then be applied for beamform-
ing in (5).
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Fig. 1: Proposed model structure consisting of convolution
(Conv), TAC, T-Transformer, and F-Conformer layers.

IV. PROPOSED METHOD

In this work, a novel DNN model that can operate with
an unknown microphone geometry is proposed to achieve
array-agnostic MC-SPP estimation and then guide MVDR
beamforming. Fig. 1 depicts the proposed neural architecture
derived from the DeFT-AN [15], which showed the best
performance for MC-SPP estimation in [11].

The neural network incorporates the real and imaginary
parts of the STFT-domain signal as input features. To ac-
commodate a variable number of microphone channels as
input, an input convolution (Up-Conv) performs spectral and
temporal processing of the input features independently for
each channel. Correspondingly, channel-wise mean pooling is
applied before the output convolution (Down-Conv) for fusion.
All stacked dual-path transformer blocks consistently process
speech features in a channel-wise manner, while two major
adaptations of neural architecture are considered to improve
computational efficiency.
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Fig. 2: Uniform Linear Array of 6 Microphones (ULA-6).

Firstly, compared to the original DeFT-AN [15], there is
no need to leverage dense convolutional blocks to extract
multi-channel spatial information. Instead, TAC layers [7] are
inserted in place of the dense blocks for spatial aggregation
through linear transformation, channel-wise averaging, and
concatenation operations. Secondly, we swap the roles of
the time and frequency modules—replacing the time-domain
Conformer with a Transformer, and the frequency-domain
Transformer with a Conformer. This architectural change em-
pirically enhances performance. The resulting Time-Frequency
Attentive block is repeated three times in a cascading fashion,
enabling efficient latent-space modeling of speech patterns.

Using the proposed DNN model, the array-agnostic MC-
SPP estimate p(k,l) can be obtained. Then, the Kullback-
Leibler [16] divergence is employed to optimize the model
parameters during training [11]:

£(p(k, 1), (k1)) = p(k, Dlog (p(’“’ ”). (10)

p(k, 1)

Given p(k,l) and the modified MVDR weights in (9),
MVDR beamforming can be performed with an agnostic array.

V. EXPERIMENTAL SETTINGS

A. Datasets and Acoustic Parameters

For the training and validation datasets, clean reading
speeches were sourced from the DNS Challenge [17]. The
testing sources were obtained from the TSP database [18].
Specifically, 7,000 and 3,000 samples of 2-second duration
(totaling 3.89 hours and 1.67 hours, respectively) were used
for training and validation. For testing, 160 samples were
prepared, each with a duration of 10 seconds, accounting for
a total of 0.44 hours. Noise samples were sourced from the
Audioset [19], Freesound [20], and Demand [21] datasets, and
were rendered as an isotropic (diffuse) noise field [22].

All experiments are performed based on data simulated
according to the signal model in (2). Pyroomacoustics' is
used to generate acoustic scenarios for training, validation,
and testing. As shown in Fig.2, a basic Uniform Linear Array
(ULA) is assumed in general, with a target speaker source
in the broadside region (i.e., a limited region in front of
the array). The room dimensions and source position change
randomly for each sample within a limited range. Detailed
configurations of the acoustic parameters are presented in
Table I.

Thttps://pyroomacoustics.readthedocs.io/en/pypi-release/index.html

TABLE I: Configurations of Acoustic Parameters

Length: 24(3,5) m; width: 4(7,9) m;
height: 24(3,4) m
Linear array with 4 microphones
First microphone: [1.5, 2, 1.7]
3 cm distance with others
U(1.4,1.7), U(2.5,3), 1.7] m
RTeo U(0.2,0.5) s
Input SNR U(—10,10) dB
*U(a, b) stands for uniformly sampling over the interval [a, b].

Room size
Microphone Array
Array position

Source position

TABLE II: Microphone Array Settings with Various Number
of Microphones for Training, Validation, and Evaluation

# Mics Mics’ Indices
) Training & Validation Evaluation
2 [1, 2] [T, 21, [1, 31, (1, 41, [T, 51, [1, 6]
[1,2,31, [1, 2, 41, 1, 3, 41,
3 S 1,2, 5], [1, 3, 6]
[1,2,3, 41,1, 2,4, 51, [1, 2, 3, 6],
: 234 1,2 4,6][L 25, 6]

B. Benchmarks and Training Procedure

The proposed array agnostic approach (Agnostic) is com-
pared to its counterpart for an array-fixed geometry. For the
array-fixed method (Fixed), DeFT-AN [15] showed the best
performance in [11], therefore, it is used to estimate array-
fixed MC-SPP as the state-of-the-art baseline. Additionally,
an ablation study to investigate the impact of the TAC layer
(Agnostic (No TAQ)) is also conducted.

To train and validate the DNN models for the array-fixed
and array-agnostic methods, considered microphone array set-
tings are shown in Table II, and explained as follows:

o Array-fixed Model: Sub-arrays of 2, 3, and 4 microphones
are selected from the ULA-6 for independent training of
three DNN models.

o Array-agnostic Model: Sub-arrays of 2, 3, and 4 micro-
phones are randomly selected from the ULA-6 for multitask
training of one DNN model.

When testing for known and unseen array geometries, we
take the following into account:

« Known array geometries: Testing samples are generated
using the same array geometries and indexes as the training
data.

« Unseen array geometries: While the number of microphones
remains the same as in the training data, the spacing is
different. The indexing of the microphones can be:

— In Order: Microphones are arranged sequentially accord-

ing to their indexes.

— With Permutation: Two random shuffles of microphone

indices are considered and evaluated for cases involving
3 and 4 microphones.

Since the first microphone is chosen as the reference mi-
crophone, it will remain consistent in any testing geometry.
This ensures the benchmarking process is straightforward and
maintains generality, due to the translational and reflectional
symmetry of the sub-arrays on ULA-6.

As for audio pre-processing, speech signals sampled at
16 kHz are transformed to the STFT domain with a 16 ms
Hamming window and 8 ms overlaps, resulting in K = 129 for
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Fig. 3: Permutation test results. For the 3 and 4 microphone conditions, two shuffled versions of the microphone indices were
used, resulting in a total of 10 Unseen-With Permutation testing arrays. Box plot distribution reflects different array geometries.

frequency dimension. As short sequence of L = 5 is used for
temporal modelling as in [14], with a latent feature dimension
of C' = 6. For training of the DNN models, Adam optimizer
[23] with a learning rate of 0.01 is deployed for minimizing
loss in (10) with batch size B = 16. To prevent overfitting,
the weight decay is set to 0.00001. According to the validation
loss curve, the best models are saved within 200 epochs.

C. Evaluation Metrics

To evaluate the enhancement performance, perceptual eval-
uation of speech quality (PESQ) [24], short-time objective
intelligibility (STOI) [25], and deep noise suppression mean
opinion score (DNSMOS) [26] are measured. For model
complexity evaluation, the Python library pt f1lops 2 is used
to measure the number of parameters (Params) and Multiply-
ACcumulate operations (MACs) per second.

VI. RESULTS AND DISCUSSION

This section presents the speech enhancement results and
model complexity assessment to draw conclusions.

Comparison on Known and Unseen-In Order: Table III
presents the numerical results for the speech enhancement
performance evaluation on both known and unseen arrays,
with microphone indices ordered as in Table II. Compared
to the array-fixed MC-SPP estimation-based method, the
proposed method generally demonstrates highly comparable
performance. While the PESQ scores are slightly lower for
known arrays, the proposed method achieves almost same
STOI and DNSMOS scores. Notably, our proposed method
demonstrates better generalization in unseen-in order scenarios
and consistently outperforms the array-fixed approach. The
array-agnostic method exhibits improved performance as the
number of microphones increases across all evaluation metrics,
indicating effective utilization of multi-channel spatial infor-
mation.

Comparison on Unseen-With Permutation: Subsequently,
Fig. 3 illustrates the results of the permutation test, revealing

Zhttps://pypi.org/project/ptiops/

TABLE III: Comparison of Speech Enhancement Performance
on Known and Unseen-In Order Arrays.

# Mics Index Methods PESQ STOI DNSMOS
Unprocessed 2.00 0.85 2.95
Fixed 2.79 0.91 3.54
Known Agnostic (No TAC) 245 0.88 3.35
5 Agnostic 2.71 0.90 3.53
Unseen- F]xed 2.52 0.88 3.36
In Order Agnostic (No TAC) 2.52 0.89 3.33
Agnostic 2.58 0.88 3.42
Fixed 2.87 0.92 3.55
Known Agnostic (No TAC) 2.49 0.89 3.38
3 Agnostic 2.81 0.92 3.56
Unseen- leed 2.73 0.91 3.48
In Order Agnostic (No TAC) 2.54 0.89 3.38
Agnostic 2.74 0.91 3.52
Fixed 2.90 0.93 3.55
Known Agnostic (No TAC) 2.52 0.90 3.41
4 Agnostic 2.82 0.92 3.56
Unseen- Fixed 2.76 0.91 3.48
In Order Agnostic (No TAC) 2.53 0.89 3.38
Agnostic 2.76 0.91 3.53

* In the Unseen-In Order condition, the metric score is the average.

that the array-fixed method failed to enhance speech. In
contrast, the array-agnostic method maintained high perfor-
mance, attributed to the permutation invariance of its neural
architecture leading to consistent performance of mask-based
MVDR beamformer. Additionally, smaller variations across
different microphone groups were observed for the array-
agnostic methods, further demonstrating their robustness with
respect to microphone spacing.

Ablation Study of the TAC Layers: In the ablation study of
the array-agnostic model without TAC layers, the model (No
TAC) consistently exhibits lower performance across all test
conditions. This suggests an inability to capture spatial infor-
mation without the TAC layers, as it essentially learns gradient
descent on an ’aggregated’ single-channel representation.

Comparison on Model Complexity: Finally, Table IV
demonstrates that the array-agnostic method consistently ex-
hibits a smaller size and lower computational cost compared to
the array-fixed method. Regarding MACs, the computational
cost increases proportionally with the number of microphones
for configurations with 2, 3, and 4 microphones. Notably, the
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TABLE IV: Comparison of Model Complexity

# Mics Methods Params MACs

Fixed 630.74 k  53.43 G/s

2 Agnostic (No TAC) 104.04 k 18.41 G/s
Agnostic 107.41 k 18.95 Gf/s

Fixed 666.96 kK 56.36 G/s

3 Agnostic (No TAC) 104.04 k  27.42 G/s
Agnostic 10741 k  28.23 G/s

Fixed 670.16 k  56.61 G/s

4 Agnostic (No TAC) 104.04 k 36.43 G/s
Agnostic 10740k 37.51 G/s

introduction of TAC layers results in a significant performance
improvement, while only causing a marginal increase in com-
plexity.

VII. CONCLUSION

In this work, we proposed a novel array-agnostic approach
for MC-SPP estimation. We adapted a neural architecture
from our previous work on array-fixed MC-SPP estimation
to accommodate a variable number of microphone channels
and ensure permutation invariance of the inputs. Experiments
conducted on simulated acoustic datasets confirmed three key
findings. Firstly, in known scenarios, the proposed method
achieved high speech enhancement performance comparable to
the array-fixed method, while maintaining lower model com-
plexity. Secondly, in unseen scenarios with agnostic array ge-
ometry, our method demonstrated robustness against changes
in microphone geometry. Notably, under microphone index
permutation conditions, our method significantly outperformed
the array-fixed method. Finally, the ablation study revealed
that the TAC layer significantly improves MC-SPP estimation
accuracy by effectively capturing spatial information from
variable input channels.
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