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Abstract—Although recent advances using microphone ar-
rays have shown impressive voice activity detection (VAD) or
overlapped speech detection (OSD) performance, their network
architectures often incur high computational costs (especially
as the number of microphones increases). In this work, by
developing a lightweight cross-domain feature extractor (L-CD-
FE), we propose a novel joint approach for VAD and OSD.
Recognizing the unique contributions of time-domain (TD) or
time-frequency (TF) representations, the L-CD-FE integrates TD
and TF features through a bidirectional cross-domain fusion
module. Here, TD and TF features are obtained from the
weighted sum of multichannel TD and TF representations using a
lightweight channel aggregation (CA) module. Finally, the L-CD-
FE is cascaded with the existing sequence modeling architecture
to jointly achieve VAD and OSD. Numerical experiments show
that the proposed method provides comparable VAD and OSD
performance with state of the arts, but it shows a remarkable
superiority in terms of computational efficiency.

Index Terms—voice activity detection, overlapped speech de-
tection, cross-domain fusion, channel aggregation.

I. INTRODUCTION

Voice activity detection (VAD) and overlapped speech de-
tection (OSD) are important pre-processing tasks in many
acoustic applications [1]-[3], in which the former detects
speech segments in audio streams while the latter detects seg-
ments containing at least two simultaneously active speakers.

Early studies [4]-[6] on VAD were based on statistical
modeling of acoustic features. With the development of deep
learning, some sequence modeling networks were applied to
VAD, such as long-short time memory (LSTM) [7] and convo-
lutional neural networks (CNN) [8]. Similarly, the most recent
OSD approaches were also based on deep neural networks, for
example, LSTM neural networks were applied to OSD in [9].
Alternatively, some other works were based on the temporal
convolutional network (TCN) [10], [11]. The above-mentioned
researches focus on single-channel speech signals, which is
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often applied to close-talk scenarios where the speaker is close
to the microphone. In a more general acoustic scene, e.g.,
speech signal is recorded by a distant device, the microphone
array is usually used to capture the scene [12].

For now, few studies were conducted on distant multichan-
nel VAD and OSD [12]-[15]. Specifically, Cornell et al. [13]
randomly selected the acoustic features of one channel from
a multichannel signal as model input. To utilize the implicit
information in the multichannel signals, some researchers [14],
[15] explored different spatial features based on handcrafted
design and demonstrated that they are beneficial to improve
VAD and OSD performance. However, those approaches are
limited by the number of microphones and the microphone
array configuration. Recent advances focused on designing
a learnable front-end feature extractor to weight and sum
multichannel signals as single-channel representations, which
can be optimized together with sequence modeling networks.
In [16], Gong et al. proposed a self-attention channel com-
bination (SACC) algorithm to compute combination weights,
which is based on the self-attention mechanism [17] module
and time-frequency (TF) features (e.g., Short-Time Fourier
Transform (STFT) magnitude). Subsequently, Mariotte et al.
[12] used SACC as the front-end feature extractor for multi-
channel VAD and OSD, and proposed several variant methods
based on SACC that utilize STFT phase information, including
Explicit cSACC (EcSACC) and Implicit cSACC (IcSACCO).
Although the recent methods show excellent performance,
they suffer from significant computational costs when fusing
multichannel signals into a single-channel representation. In
addition, they often only employ the TF features (e.g., STFT
magnitude or phase), ignoring the contribution of time-domain
(TD) representations.

To this end, we present a lightweight cross-domain fea-
ture extractor (L-CD-FE) for multichannel VAD and OSD,
which extracts deep features from time-domain (TD) or time-
frequency (TF) representations. Unlike self-attention-based
methods, we employ a lightweight channel aggregation (CA)
module to weight and combine multichannel TD or TF repre-
sentations, which involves a simple ¢; normalization without
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introducing excessive parameters and computational costs.
Then, we propose a bidirectional cross-domain fusion module
to efficiently integrate information from both the TD and TF.
The proposed L-CD-FE is compared with the state-of-the-art
SACC-based methods on the AMI meeting corpus [18], and
the results show that the system with proposed L-CD-FE can
achieve lightweight and efficient multichannel VAD and OSD.

II. PROBLEM FORMULATION

VAD+OSD can be formulated as a three-category classi-
fication task: non-speech (n4,,=0), single speech (ngy,=1),
and overlapped speech (n4,1>2) with n,y; being the number
of active speakers. Fig. 1 shows the classical flowchart of
multichannel VAD+OSD. First, multichannel audio signals
X € RY*N with C channels and N samples are fed into
the feature extractor to output single-channel frame-wise rep-
resentations X' = [x},...,x},..x}] € REXT  where ¢ the
time frame index, E/ and 7' represent the numbers of features
and frames, respectively. Then, VAD+OSD can be imple-
mented by using sequence modeling network to produce the
prediction sequence Y = [§1,..., ¢, ..., §7] € R3*T, where
Ve = [p(nspr = 0[x}), p(nspr = 1[x1), p(nspe > 2|X::)]T de-
notes the probabilities of each class at the ¢-th frame. Finally,
VAD can be solved by combining the last two probabilities
outputs, i.e. p(nepr = 1|x})+p(nspr > 2|x}), while OSD is
inferred from p(nspr > 2|X}).

The sequence modeling network using LSTM or TCN
performs well for multichannel VAD+OSD tasks [12]-[14],
and the state-of-the-art feature extractor [12] using cross-
channel attention outperforms handcrafted schemes in ac-
curacy. However, the latter brings substantial computational
overhead, especially as the number of channels increases.

. ,| Sequence [ p(gpi = 0|X")
Multwh;annel X i) Modeling —>Y { P(ngpic = 1]X)
Audio Network p(nspre = 21X

Fig. 1. Simplified flowchart for multichannel VAD+OSD.

III. LIGHTWEIGHT CROSS-DOMAIN FEATURE EXTRACTOR

Recognizing the unique contributions of time-domain (TD)
or time-frequency (TF) representations [19], we propose a
lightweight cross-domain feature extractor (L-CD-FE), which
integrates the TD feature and the TF feature in a parallel
architecture, as shown in Fig. 2. The TD feature is extracted
from frame-processed multichannel raw speech waveform,
while the TF feature is extracted from multichannel STFT
magnitudes. There are three major parts: channel aggregation
(CA), an encoder, and bidirectional cross-domain fusion (B-
CDF). To be specific, CA integrates the multichannel (TD or
TF) features into the single-channel one by weighting and
summing operations in a lightweight manner. The encoder
extracts the deep TD features, which consists of simple
convolution, activation function, and normalization layer. The
B-CDF fuses the TD feature O and the TF feature O 4 into

a cross-modal representation X', based on the cross-attention
between the two modal features.
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Fig. 2. A Lightweight cross-domain feature extractor (L-CD-FE) architecture.

A. Channel Aggregation (CA)

To mitigate computational burden, inspired by [20], we
design a lightweight channel aggregation (CA) module to
integrate multichannel signals. Let ¥(-) denote the mapping of
the proposed CA module. In the time domain, the integrated
TD feature F € REXT can be obtained by F = ¥ (F),
where F € RE*LXT js the TD signal with L being the
frame length. Similarly, in the TF domain, the integrated TF
feature A € RM*T can be obtained by A = W(.A), where
A € REXMXT js the STFT magnitude with M being the
number of frequencies.

The CA module ¥(-) includes three key components: global
context embedding, channel normalization, and channel at-
tention, as shown in Fig. 2 (a). Here, the detail of ¥(-) is
formulated in the time domain, for example, by defining F =
[F1,Fa,...,Fc], where F. = [fo1, fe2, .., for] € REXT s
the TD signal of the c-th channel with f., = [fi,] € R", and
ce{l,2,..,C}tand t € {1,2,..,T}.

Global Context Embedding: Global information can cap-
ture a larger receptive field, avoiding local ambiguities [21].
As frame-level prediction is required in multichannel VAD
and OSD, we first use a global context embedding module
to aggregate the global context information in each frame
for each channel. Given the channel embedding weight o =
[a1, g, ..., ac], the global context embedding can be modeled

as I
Sc,tac||fc,t|1ac{[2|fg7t|+e } 5 (1)
=1

where ¢ is a small constant, ||-||; denotes ¢1-norm, and || f. /|1
is the sum of amplitudes within frame. As different channels
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have different significance, we use the learnable parameter o
to control the channel weights.

Channel Normalization: Normalization methods can stabi-
lize training performance with lightweight computing resource
[20], [22]. We use an {¢; normalization to operate across
channels, obtaining

. St St
5 — _ )
e+ sl e+ [seel’

T a s 2 T
where s; = [s1¢, 82,4, -..,8c,e) and 8 = [814, 82,4, ..., Sc ] -

Channel Attention: We adopt a channel attention mecha-
nism to assign a weight for each channel, i.e.,

w; = softmax(y ® §; + B), 3

where w; is the weight of channels at frame ¢, v = [y1, ..., Y¢]
and 3 = [$1, ..., Bc] are learnable weights and biases, respec-
tively, and ® represents the element-wise product. Then, the
integrated TD feature F can be computed by

C

Fi=> ferOwie )
c=1

F:[flanH'")fT]a (5)

where w, . is the c-th element of wy;.

B. Encoder

The integrated TD feature f‘, obtained from the CA module
in the upper branch in Fig. 2, is further refined by an encoder
with Mean and Variance Normalization (MVN), generating the
final TD feature O € RP*T where D is the dimension after
refinement. In detail, as depicted in Fig. 2 (b), the encoder
consists of a stack of K basic layers, each containing a
Convl1D layer, a PReLU activation, and a LayerNorm opera-
tion, followed by a Conv1D layer that controls the dimension
of output features.

Alternatively, the integrated TF feature A, obtained from the
CA module in the lower branch in Fig. 2, is further refined
through well-known log-mel filters with MVN, generating the
final TF feature O 4 € RP*T,

C. Cross Fusion Module

To effectively fuse the final TD feature O and TF feature
O 4, we propose a novel bidirectional cross-domain fusion (B-
CDF) module, as shown in Fig. 2 (c). The design of the B-
CDF is based on a cross-attention mechanism. Thus, the query
vectors (Qr,Q4), key vectors (Kp,K 4) and value vectors
(VE,V 4) can be obtained from the embeddings of O and
O 4, respectively, through 1D convolutional layer mapping.
Then, the TD attention feature O p_, 4 and TF attention feature
O 4_,r can be computed respectively by

KT

Op a— softmax(Q\‘jEF )Vi+ 04, (6)
KT

Oup = softmaX(Q\l;EA )Va+Op, 7

where the feature dimension of Q, K and V is D. Finally,
the fused feature X’ is generated by concatenating O _, 4 and
O 4, along the first dimension, i.e.,

X' = Concat(OF_,A,OA_)F). (8)

After fusing TD feature and TF feature, X’ provides com-
plementary information from both domains for the sequence
modeling network.

IV. EXPERIMENTS
A. Dataset

Experiments were conducted on the AMI meeting corpus
[18], which contains 100 hours of realistic meeting recordings.
We adopted the AMI Arrayl data that was captured by an
8-microphone circular array placed in the center of the table.
Training, Development (Dev), and Evaluation (Eval) partitions
followed the protocol proposed in [23]. During the training
phase, ground truth was generated via Forced-Alignment [13].
The results on the Dev and Eval sets were evaluated using the
official annotation.

B. Sequence Modeling Networks

To evaluate the robustness of the proposed feature extractor,
we considered two well-known sequence model architectures
used in VAD and OSD: namely the Bidirectional LSTM
(BLSTM) and the TCN.

BLSTM: This sequence modeling architecture was com-
posed of a single BLSTM layer with 256 cells, which was
connected to a three-layer feed-forward network (FFN) for
post-processing. Note that the output sizes of FFN layers were
L1 =128, Ly = 128, and L3 = 3 respectively, and the first
two FFN layers were followed by a PReLu activation function.

TCN: The adopted TCN consisted of 1D convolutional
layers with exponentially increasing dilation rates to efficiently
capture long-range temporal dependencies. We utilized 5 resid-
ual convolutional blocks replicated 3 times. This above TCN
architecture was identical to [12, Sec.III-B].

C. Baselines

The proposed L-CD-FE was compared with state-of-the-art
learnable front-end feature extractors [12], including SACC,
EcSACC and IcSACC. Consistent with the experimental steps
in [12], all these feature extractors output a 64-dimensional
feature in each frame. For L-CD-FE, the encoder stacked K =
3 basic layers. The dimension of the TD feature O 4 and the
TF feature O was fixed to D = 64, outputting £ = 128
dimensional cross-domain feature in each frame.

D. Training and Evaluation Setup

The LSTM and TCN were trained using 3 seconds of
audio segments randomly sampled from the training set. We
used ADAM [24] with a mini-batch size of 32. The frame
length was equal to 25 ms with 60% overlap. All experiments
were executed on an NVIDIA L40S GPU. VAD performance
was evaluated using the false alarm rate (FA), the miss
detection rate (Miss), and the segmentation error rate (SER),
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TABLE I
VAD AND OSD PERFORMANCE, WHICH ARE OBTAINED ON AMI DEVELOPMENT (DEV) AND EVALUATION (EVAL) SETS. BOLD VALUES INDICATE THE
BEST-PERFORMING RESULTS, AND  DENOTES RE-IMPLEMENTATION IN OUR EXPERIMENTAL SETUP. THE FLOATING-POINT OPERATIONS (FLOPS) ARE
PERFORMED ON THE INPUT SIGNAL X € R8%400,

VAD OSD
Seq. Mod.  Fea. Ext. Param. FLOPs FA | Miss | SER | Prt Ret F11
Dev  Eval Dev Eval Dev Eval Dev Eval Dev Eval Dev Eval

SACCt 0879007 2.30M.gop 15.65 1291 1.93 2.75 17.58.,00% 15.66.000: 60.69 57.70 76.73 69.51 67.78.,000% 63.06.

BLSTM EcSACCY 1.00M; 4049, 4.48Mios780, 16.00 1342 1.88 2.69 17.88.030% 16.11,0454 5630 53.34 70.10 6223 62.45 57.52

IcSACCt 0.87TM.00% 4.55M. 97830, 1647 1336 2.11 3.12 18.58, 0% 16.48.05% 58.87 56.93 70.09 57.08 64.00 57.01

L-CD-FE 0.75M 0.23M 1597 1330 1.74 243 17.71.9139 15.73,0079, 60.10 58.89 78.37 67.83 68.03.),50, 63.04
SACCt  0.40M.o00  2.69M.0000 14.08 11.94 1.81 246 15.89.,00¢ 14.40.000, 66.62 65.14 81.47 74.59 73.33.0000 69.55.0.00%

EcSACCt 0.53M.350% 4.83M.i79559, 14776 12.06 2.13 2.89 16.89,1009 14.95.0554, 63.26 60.40 77.74 69.60 69.76 64.68

TCN IcSACCt 0.40M,o000 4.89M.g1 789 1545 13.16 2.54 283 17.99.510 15.99,150% 59.29 58.66 77.68 6695 67.25 62.53
L-CD-FE 0.30M 0.64M 1496 12.08 178 245 16.74.0850, 14.53.0130, 6649 66.65 80.77 7339 72.94 69.86.( 319

where SER = FA 4+ Miss. OSD performance was evaluated
using precision (Pr), recall (Re), and Fl-score (F1), where
F1=2-(Pr-Re)/(Pr+ Re).

V. RESULTS AND DISCUSSION

In this section, we tested the VAD and OSD performance
of both BLSTM and TCN architectures using different feature
extractors. We can see from Table I that the proposed L-CD-
FE shows competitive VAD and OSD performance with the
smallest complexity.

A. BLSTM Results

The BLSTM with L-CD-FE demonstrates significant ad-
vantages in terms of parameter count (0.75M) and FLOPs
(0.23M). For example, its FLOPs are 90% lower than those
of the second-best BLSTM using SACC. For the VAD task,
the SERs of the BLSTM using L-CD-FE are 17.71% and
15.73% on the Dev and Eval sets, respectively. These values
are slightly higher than those of the BLSTM using SACC
(by approximately 0.1%) but lower than those of EcSACC
or IcSACC. For the OSD task, the BLSTM with L-CD-FE
achieves the best F1 score on the Dev set and the second-best
F1 score on the Eval set.

B. TCN Results

Overall, the TCN provides better VAD and OSD perfor-
mance than the BLSTM when using all kinds of feature
extractors. The TCN with L-CD-FE provides the smallest
number of parameters and FLOPs. Specifically, its FLOPs
are 0.64M, which are 76.21% lower than that of the second-
best TCN using SACC. In addition, the TCN using L-CD-
FE outperforms the TCN using EcSACC or IcSACC in terms
of VAD and OSD performance. Moreover, using L-CD-FE
achieves OSD performance comparable to that of using SACC,
while the latter provides better VAD performance.

VI. ABLATION EXPERIMENTS

In this section, we performed ablation experiments on the
AMI Eval set to verify the effectiveness of the proposed feature
extractor, where the TCN was adopted to act as the sequence
modeling network.

A. Contributions from Different Domains

In this part, we tested VAD and OSD performance by
extracting the TD feature, the TF feature, and the cross-domain
feature. Note that the TD (or TF) feature was extracted after
removing the lower (or upper) branch in the proposed L-
CD-FE architecture. As shown in Table II, the TD feature
shows the worst performance, with a VAD SER of 17.8% and
an OSD Fl-score of 61.58%. The TF feature achieves better
performance compared to the TD feature, reducing VAD SER
by 3.21% and increasing the OSD Fl-score by 7.5%. The
cross-domain feature achieves the best VAD (SER 14.53%)
and OSD (F1-score 69.86%) results. This illustrates that both
the time domain and time-frequency domain make a unique
contribution to VAD and OSD tasks.

TABLE 11
VAD AND OSD RESULTS USING FEATURES FROM DIFFERENT DOMAINS.

. VAD OSD
Domains .
FA] Miss] SER.J Prt  Ret F11
Time 14.95 2.85 17.8044)(;()(, 57.51 6626 61.58+1)(m/(
Time-frequency 11.89 2.70  14.59 63.58 75.62 69.08.7507
Cross 12.08 245 14.53 66.65 73.39 69.86.5:39

B. Impact of Encoder Depths

The encoder used in the TD feature extractor consists of
stacked basic layers, each comprising a ConvlD layer, a
PReLU activation, and a LayerNorm operation. To investigate
the impact of the number of encoder depths on VAD and OSD
performance, we tested three different configurations: K=0
layers, K=3 layers, and K=6 layers. As shown in Table III,
removing all the basic layers (i.e., K=0 layers) or using too
many encoder layers (i.e., =6 layers) leads to reduced VAD
and OSD performance compared to the encoder with 3 layers.
This is probably because the O-layer encoder does not extract
deep TD features, while the encoder with deeper layers may
lead to overfitting.

C. Different Domain Fusion Strategies

To verify the effectiveness of the proposed bidirectional
cross-domain fusion method, we compared it with two classic
fusion strategies: concatenation-based fusion in Fig. 3(a) and

189



TABLE III
VAD AND OSD RESULTS AT DIFFERENT ENCODER DEPTHS.

VAD 0SD
Encoder depth .
FA] Miss| SERJ Prt  Ret F11
K =0 1224 260 148400, 6350 7597 69.18.000
K=3 1208 245 1453 66.65 73.39 69.86.0 65
K=6 118 294 1479 63.34 7477 68.58
TABLE IV
VAD AND OSD RESULTS BASED ON DIFFERENT DOMAIN FUSION
METHODS.
VAD 0SD
Fusion method
usommetots - pAl Missi  SERL  Prt Ret  FlIf
Concatenation  12.34 234 14.68.000, 6431 7498 6924, 0,
Self-Attention  12.15  2.63 14780100 66.75 72.84 69.6640.420
Bidirectional Cross 12.08 245 1453 66.65 7339 698600

self-attention-based fusion in Fig. 3(b). From Table IV, we can
see that concatenation-based fusion exhibits the worst VAD
SER and OSD F1 performance. By comparison, self-attention-
based fusion improves the F1 score by 0.4% in OSD tasks,
but results in a 0.1% increase in VAD SER. Compared to
these strategies, the bidirectional cross-domain fusion strategy
improves both VAD and OSD performance, achieving the best
VAD SER of 14.53% and OSD F1 score of 69.86%. These
results demonstrate that bidirectional cross-domain fusion can
combine information from different domains more effectively.

O,4 OF
O4 OF
Xl
X'
(a) (b)

Fig. 3. Comparison domain-fusion strategies: (a) concatenation-based fusion,
(b) self-attention-based fusion.

VII. CONCLUSION

In this work, we designed a lightweight cross-domain fea-
ture extractor (L-CD-FE) for multichannel VAD and OSD,
which extracts deep features from both the time domain and
time-frequency domain. The L-CD-FE was validated on two
well-known sequence modeling networks (i.e., BLSTM and
TCN). The results showed that our method achieves compet-
itive VAD and OSD performance with significantly reduced
parameter count and FLOPs compared to the state-of-the-art
front-end feature extractors. In future work, we will study
lightweight sequence modeling networks and combine them
with the L-CD-FE, developing more lightweight multichannel
VAD and OSD.
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