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Abstract—The demand for realistic virtual immersive au-
dio continues to grow, with Head-Related Transfer Functions
(HRTFs) playing a key role. HRTFs capture how sound reaches
our ears, reflecting unique anatomical features and enhancing
spatial perception. It has been shown that personalized HRTFs
improve localization accuracy, but their measurement remains
time-consuming and requires a noise-free environment. Although
machine learning has been shown to reduce the required mea-
surement points and, thus, the measurement time, a controlled
environment is still necessary. This paper proposes a method
to address this constraint by presenting a novel technique that
can upsample sparse, noisy HRTF measurements. The proposed
approach combines an HRTF Denoisy U-Net for denoising and
an Autoencoding Generative Adversarial Network (AE-GAN)
for upsampling from three measurement points. The proposed
method achieves a log-spectral distortion (LSD) error of 5.41 dB
and a cosine similarity loss of 0.0070, demonstrating the method’s
effectiveness in HRTF upsampling.

Index Terms—Head-Related Transfer Function, Generative
Adversarial Network, Upsampling, Denoising.

I. INTRODUCTION

We live in an ever more digital world where the need
to create realistic, immersive audio is becoming ever more
essential. The implications of being able to create convincing
immersive audio virtually are broad, not only in helping en-
hance augmented and virtual meetings or video games, but also
playing an essential role in improving assistive technologies.
These include but are not limited to hearing aids [1] and
advancing speech intelligibility algorithms [2].

One of the main challenges of immersive audio is adapting
to individual listeners [3]. This individualization has resulted
in a large amount of research focusing on Head-Related Trans-
fer Functions (HRTFs). HRTFs describe how sound waves
are modified as they propagate from a sound source to the
listener’s ears. This filtering is affected by a number of factors,
including sound diffraction, reflection, and absorption by the
listener’s head and torso, as well as the resonances and shape
of the listener’s outer ears (pinnae). As a result, HRTFs con-
tain both binaural cues, including interaural level differences
(ILDs) and interaural time differences (ITDs), and monaural
spectral cues, which are crucial for sound localization. There-
fore, when the sound is appropriately filtered by the HRTF
and presented at the entrance of the listener’s ear canals, the
listener should be able to perceive the sound originating from
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a specific source location [4]. This underscores the significant
role HRTFs play in creating a realistic and immersive audio
environment, particularly in applications such as virtual reality
(VR) [5], [6] and augmented reality (AR) [7], [8].

Personalized HRTFs are closely tied to an individual’s
anatomy, with each person possessing a unique HRTF. Uti-
lizing non-individualized HRTFs in virtual simulations often
leads to poor sound source localization performance [9],
[10]. To ensure an optimal user experience, acquiring a per-
sonalized HRTF is crucial. One common approach involves
acoustic measurements [11], where sine sweeps are played
from specific source locations, recorded at the listener’s ears,
and analyzed to extract impulse responses for generating the
HRTF. However, this process requires specialized equipment
and controlled environments, making it time-intensive [12].

To improve the efficiency and scalability of HRTF person-
alization, spatial up-sampling has been introduced to address
the limitations of low-resolution HRTF data, which typi-
cally includes sparse measurements from limited directions.
This technique generates high-resolution HRTFs by increasing
measurement density, enhancing accuracy and coverage. Two
common approaches are Barycentric interpolation [13] and
spherical harmonic (SH) interpolation [14]. Barycentric inter-
polation uses weighted averages of known points to estimate
values in unmeasured areas, while SH interpolation projects
the HRTF onto spherical basis functions for smooth spatial
representation. These methods have significantly advanced
HRTF up-sampling, enabling more accurate and individualized
sound localization.

In recent years, machine learning (ML) methods have also
emerged as promising approaches for HRTF personalization
[15]–[17]. Techniques such as variational autoencoders (VAEs)
[18] encode HRTFs into a latent space to reduce dimension-
ality while preserving key features, enabling reconstruction
and upsampling of low-resolution HRTFs by filling in missing
details. Generative adversarial networks (GANs) [19], [20] use
a generator to produce synthetic HRTFs and a discriminator
to differentiate between real and synthetic data, learning data
distributions to generate detailed high-resolution HRTFs. The
SONICOM Listener Acoustic Personalization (LAP) Chal-
lenge 2024 demonstrated the superiority of ML techniques
over traditional signal processing approaches [21].

Despite their advancements, these ML approaches still rely
on clean and high-resolution data, necessitating noise-free
environments for recording accurate HRTF measurements. To
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Fig. 1. HRTF-DUNet Flowchart. The left panel illustrates the data simulation pipeline, where noisy HRTF data is generated, segmented, and transformed
using spherical harmonic analysis, resulting in low-resolution noisy coefficients stored in a dataset. The Denoisy U-Net then reconstructs clean SH coefficients
from these inputs. The right panel presents the overall model framework. Red arrows indicate the AE-GAN training process, including the feedback loop for
parameter updates, while black arrows represent the feedforward process through the model.

overcome this constraint, denoising (as well as upsampling)
is needed, as real-world measurements are often degraded by
background noise and room interactions, particularly in non-
acoustically treated settings. Addressing these challenges is
critical to improving accessibility, enabling accurate HRTF
measurements, and expanding the adoption of immersive audio
technologies and their applications. The contributions of this
paper can, therefore, be broken down as follows:

1) We enhance the AE-GAN approach from the authors’
previous work [20] on HRTF upsampling.

2) We employ an HRTF Denoisy U-Net for the task of de-
noising HRTFs measured in simulated noisy conditions.

3) We propose a novel end-to-end framework (HRTF-
DUNet) and evaluate its performance against four base-
lines (AE-GAN without DUNet, Barycentric interpola-
tion, SH interpolation, and HRTF selection) in terms of
the LSD on the SONICOM HRTF dataset [11].

II. METHOD

A. HRTF Denoisy U-Net

The proposed approach improves SH interpolation by using
an AE-GAN to increase the SH order. Therefore, the noisy
HRTF data first needs to be transformed into the SH domain
using the Spherical Harmonic Transform (SHT) as part of
a pre-processing step [22]. The noisy, low-resolution SH
coefficients are then passed to the HRTF Denoisy U-Net,
which outputs the denoised low-resolution SH coefficients.

The Denoisy U-Net architecture is shown in Fig. 2 and
consists of an initial convolutional block that processes the
noisy input SH coefficients. Each convolutional block in the
network applies a 1D convolutional layer followed by batch
normalization and a ReLU activation function. The final layer
of the network maps the refined features back to the original
low-resolution SH coefficients.

B. AE-GAN
Next, the AE-GAN model from [20] is employed to upsam-

ple the denoised SH coefficients. The autoencoder consists
of an encoder and a decoder network, where the encoder
extracts the latent representation, z, of the low-degree SH
coefficients, and the decoder reconstructs the high-resolution
coefficients. As a refinement, we incorporate channel attention
blocks within the residual blocks of the encoder, allowing the
model to adaptively focus on important frequency components
by dynamically weighting channel-wise features. Additionally,
a discriminator is integrated into the model to distinguish
between the SH coefficients produced by the generator and
those from the real data, ensuring the authenticity of the
generated outputs. To further enhance the diversity and sparsity
of the generated SH coefficients and improve the realism of
individualized HRTFs, we integrate minibatch discrimination
[23] into the original discriminator network. This mechanism
allows the model to assess not just individual samples but their
variations within a batch, promoting higher sparsity of input
and greater diversity in the generated outputs.

III. EXPERIMENTAL SETUP

A. Data Generation for Training
The training and testing data come from the SONICOM

HRTF dataset [11], employing 793 positions per HRTF.
To simulate real-world HRTF measurement noise, we add

both white and pink noise in the time domain to the clean
HRTFs from the SONICOM dataset. Noise is added to the left
and right sides of the HRTF independently before the impulse
responses from the two ears are concatenated together. The
noise component, N(t), which can comprise either of white
noise or pink noise, is defined as follows,

Nwhite(t) ∼ N (0, σ2) , (1)

where Nwhite(t) represents the white noise at time t and
N (0, σ2) indicates that the white noise follows a gaussian
distribution with Mean 0 and variance σ2.
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Fig. 2. Scheme of the proposed HRTF Denoisy U-Net.

Npink(t) =
1

M

∑M

i=1
randni(t) , (2)

where M is the number of random sources, typically set to 16
in the Voss-McCartney algorithm. Noise is added at the desired
signal-to-noise ratio (SNR) using the following approach.

HRTFnoisy, white(t) = HRTF(t) +Nwhite(t) , (3)

where HRTFnoisy, white(t) is the white noisy HRTF signal in the
time domain and HRTF(t) is the original HRTF signal.

HRTFnoisy, pink(t) = HRTF(t) + 1
M

√
Psignal

SNRlinear·Pnoise

∑M
i=1 randni(t) . (4)

where HRTFnoisy, pink(t) is the pink noisy HRTF signal in
the time domain, Psignal = 1

T

∑T
t=1 HRTF(t)2 and Pnoise =

1
T

∑T
t=1 N(t)2 denote the average power of the original HRTF

and noise, respectively. The signal-to-noise ratio in linear
scale is given by SNRlinear, where randni(t) represents the i-
th random noise source and M is the total number of noise
sources. The noisy HRTFs are then downsampled to generate
the low-resolution noisy data for training.

B. Training

1) Denoisy U-Net Training: The model is trained using a
combination of loss functions, primarily L1 loss,

LL1 =
1

N

∑N

i=1
|SHdenoised,i − SHtarget,i| , (5)

where SHtarget,i is the ground truth clean SH coefficient,
SHdenoised,i is the denoised SH coefficient, and N is the number
of coefficients.

Additionally, a cosine similarity loss (CSL) is used to
ensure that the angular similarity between the denoised SH
coefficients and target coefficients is maximized. The cosine
similarity loss is defined as,

Lcos = 1−
∑N

i=1 SHdenoised,i · SHtarget,i√∑N
i=1 SH2

denoised,i ·
√∑N

i=1 SH2
target,i

. (6)

2) AE-GAN Training: The discriminator is trained via su-
pervised learning, utilizing both generated and real HRTF data,
and aims to guide the autoencoder to produce high-fidelity
results. In this study, we further extend the application of AE-
GAN by expanding the range of sparcity levels to include 4
points and 3 points, thus demonstrating the model’s robustness
and scalability across a broader spectrum of resolutions.

3) HRTF-DUNet Training: We employ cascaded backprop-
agation for end-to-end training, allowing smooth gradient flow
between the U-Net denoiser and AE-GAN upsampler. Trained
on 162 noisy subjects, this setup ensures the U-Net effectively
denoises SH coefficients to support accurate upsampling by
AE-GAN, particularly under extreme sparsity conditions.

C. Baselines

The performance of the proposed approach is compared
against four baselines: AE-GAN without DUNet, barycentric
interpolation, SH interpolation, and non-individual HRTF se-
lection. The AE-GAN approach is presented in [20]. Barycen-
tric interpolation estimates unknown values by computing
weighted averages of known points using three barycen-
tric coordinates. SH interpolation, widely used for HRTF
upsampling [22], projects HRTF data onto SH for smooth
spatial representation. An alternative to personalized HRTF
modeling selects the closest match from a database. Follow-
ing [19], Selection-1 represents the most ‘generic’ HRTF,
while Selection-2 is the most ‘distinct’.

D. Evaluation Metrics

Three metrics are used for evaluating the performance.
1) Interaural level difference (ILD): The ILD represents

the interaural level difference, which is the difference in sound
pressure level between the two ears for a given frequency fb,
number of spatial locations N , total number of frequency bins
B and direction xn, calculated by,

ILD =
1

N

∑N

n=1

1

B

∑B

b=1

∣∣∣∣∣
(
20 log10

|HLeft
LR (fb, xn)|

|HRight
LR (fb, xn)|

)

−

(
20 log10

|HLeft
DN (fb, xn)|

|HRight
DN (fb, xn)|

)∣∣∣∣∣
, (7)
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The terms |HLeft(fb, xn)| and |HRight(fb, xn)| denote the mag-
nitude responses for the left and right ears, respectively. Simi-
larly, |HLR(fb, xn)| and |HDN(fb, xn)| represent the magnitude
responses for the low-resolution and denoised HRTF sets.

2) Interaural time difference (ITD): The ITD, quantifies the
arrival time gap of a sound wave between the left and right
ears for the same frequency and direction, given by,

ITD =
1

N

∑N

n=1

1

B

∑B

b=1

∣∣∣∣∣
(
ϕLeft

LR (fb, xn)− ϕRight
LR (fb, xn)

2πfb

)

−

(
ϕLeft

DN (fb, xn)− ϕRight
DN (fb, xn)

2πfb

)∣∣∣∣∣
, (8)

where ϕLeft
LR (fb, xn) and ϕRight

LR (fb, xn) represent the phase
responses of the low-resolution HRTF for the left and right
ears. Similarly, ϕLeft

DN (fb, xn) and ϕRight
DN (fb, xn) correspond to

the denoised HRTF phase responses.
3) Log-spectral distortion (LSD): The LSD [24] is an

evaluation metric utilized to assess the quality of a synthesized
audio signal relative to a reference audio signal. In this context,
LSD is employed to evaluate the denoising and upsampling
performance of HRTFs using the proposed HRTF-DUNet
framework. The LSD loss quantifies this comparison by eval-
uating the discrepancy between the target magnitude spectrum
HHR and the generated spectrum HG. This computation can
be expressed in the following way,

LSD = 1
N

∑N
n=1

√
1
W

∑W
w=1

(
20log10

|HHR(fw,xn)|
|HG(fw,xn)|

)2
, (9)

where N represents the overall count of positions, and xn

corresponds to a specific position.

IV. EXPERIMENTAL RESULTS

Two experiments were performed to evaluate the newly
proposed HRTF-DUNet model. These experiments utilised 41
test subjects (HRTFs) not seen in training from the SONICOM
dataset, where white noise was added at an SNR of 5dB.

A. Denoising Evaluation

The proposed Denoisy U-Net model for HRTF denoising is
evaluated against three baseline methods: Spectral Subtraction
[25], Wavelet [26] and Kalman [27] Filtering. Table I presents
the performance comparison across three evaluation metrics:
CSL (detailed in Section III-B1), ILD (outlined in Section
III-D1), and ITD (described in Section III-D2). Fig. 3 shows
results of the HRTF Denoisy U-Net.

The results demonstrate that the HRTF Denoisy U-Net
model outperforms the baselines across all metrics. For exam-
ple, CSL, which measures the similarity between the denoised
and target HRTFs, is significantly lower for the HRTF Denoisy
U-Net model (0.007), indicating a higher degree of similarity
and better denoising capability. Additionally, the U-Net model
shows superior performance in preserving ILDs and ITDs,
with the lowest deviations of 19.757 and 1.301, respectively.
These results indicate that the denoising process effectively
preserves critical spatial cues that are contained within the
HRTFs and which are needed for realistic, immersive audio.

TABLE I
A COMPARISON OF HRTF DENOISY U-NET AND BASELINES WITH
DIFFERENT EVALUATION METRICS (‘BEST’ RESULT HIGHLIGHTED).

Method CSL ILDs ITDs

HRTF Denoisy U-Net 0.007 19.757 1.301
Wavelet Filtering with dB7 0.283 24.591 2.783

Wavelet Filtering with Gaus3 0.213 22.178 2.846
High-Pass Spectral Subtraction 0.339 23.936 2.946

Kalman Filtering 0.206 20.491 2.152

Fig. 3. Two illustrative examples (top and bottom) showcasing the HRTF
Denoisy U-Net’s performance on two different subjects at the same measure-
ment location, with additive white Gaussian noise applied at an SNR of 5 dB.

B. LSD Evaluation

Second, the HRTF-DUNet model is evaluated using the
LSD metric (see Section III-D3), averaging the LSD across
all measurement positions. Table II presents the results for 41
noisy test subjects, with a visualization in Fig. 4.

The results show that the HRTF-DUNet model consistently
achieves a lower LSD error at sparcity levels 4 → 793 and
3 → 793, where it significantly outperforms other baselines.
This suggests that HRTF-DUNet effectively denoises and
learns patterns in noisy HRTF features, even in extremely
sparse conditions. Unlike traditional interpolation methods,
which rely on a predefined spatial structure, the deep-learning-
based approach can generalize from the available data and
reconstruct a more accurate HRTF. Barycentric and SH in-
terpolation yield higher LSD errors at extreme sparsity levels
as their geometric assumptions break down. However, with
sufficient initial points, they perform well by leveraging spatial
smoothness and structured mathematical formulations for ac-
curate interpolation. AE-GAN struggles at high sparsity levels
due to insufficient spatial information and noise in the limited
initial HRTF points, preventing effective feature learning.
However, as sparsity decreases, AE-GAN benefits from more
input data, enabling better feature extraction and improved
high-resolution HRTF reconstruction. The HRTF selection
approach performs poorly, with LSD errors of 6.31 and 8.33
for Selection-1 and Selection-2, respectively. This reinforces
the limitation of non-individualized HRTFs, emphasizing the
need for personalization to achieve realistic virtual audio.
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TABLE II
A COMPARISON OF THE MEAN LSD ERROR (STANDARD DEVIATION) FOR

DIFFERENT SPARSITY LEVELS (‘BEST’ PERFORMANCE HIGHLIGHTED).

Method Upsampling [No. intial → No. upsampled]
27 → 793 18 → 793 8 → 793 4 → 793 3 → 793

HRTF-DUNet 5.23 (0.19) 5.58 (0.28) 6.06 (0.32) 5.43 (0.45) 5.41(0.41)
AE-GAN 7.74 (0.41) 8.20 (0.49) 8.76 (0.55) 9.70 (0.56) 9.89 (0.51)

SH 5.12 (0.27) 5.54 (0.31) 7.54 (0.37) 12.46 (0.39) 12.41 (0.44)
Barycentric 4.89 (0.24) 5.46 (0.27) 7.22 (0.35) 10.07 (0.43) 11.69 (0.47)
Selection-1 6.31 (0.59)
Selection-2 8.33 (0.47)

Fig. 4. Log-spectral distortion (LSD) error comparison.

V. CONCLUSION AND FUTURE WORK

This paper introduces a novel framework using the HRTF-
DUNet model for simultaneous HRTF denoising and upsam-
pling, simplifying the measurement process for personalised
HRTFs. To the best of our knowledge, this is the first work
to address the problem of HRTF denoising, demonstrating its
feasibility and advantages in improving HRTF quality. The
proposed method outperforms other approaches by effectively
denoising and upsampling three measurement points with 5 dB
of additive white noise into a high-resolution, clean HRTF.

This work serves as a proof of concept, showing that
denoising is both feasible and helpful for HRTF upsampling.
Future work will move beyond simulated white and pink noise,
applying the method to more realistic synthetic and recorded
noise to better reflect real-world conditions.

Additionally, challenges still remain in measuring HRTFs
in uncontrolled environments, particularly problems with re-
verberation and frequency range limitations. These issues
arise due to the reverberation present when measuring in
untreated rooms and the frequency limitations imposed by the
speakers used for recording the HRTFs. We aim to address
these challenges through future work, including perceptual
evaluations with auditory models and listening tests to validate
the model’s effectiveness in practical immersive audio settings.
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