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Abstract—Multichannel speech enhancement algorithms are
essential for improving the intelligibility of speech signals in
noisy environments. These algorithms are usually evaluated at
the utterance level, but this approach overlooks the disparities in
acoustic characteristics that are observed in different phoneme
categories and between male and female speakers. In this paper,
we investigate the impact of gender and phonetic content on
speech enhancement algorithms. We motivate this approach
by outlining phoneme- and gender-specific spectral features.
Our experiments reveal that while utterance-level differences
between genders are minimal, significant variations emerge at
the phoneme level. Results show that the tested algorithms
better reduce interference with fewer artifacts on female speech,
particularly in plosives, fricatives, and vowels. Additionally, they
demonstrate greater performance for female speech in terms of
perceptual and speech recognition metrics.

Index Terms—Multichannel speech enhancement, beamform-
ing, phoneme-level evaluation, gender-level evaluation.

I. INTRODUCTION

Speech enhancement (SE) aims at retrieving a clean speech
signal from a mixture contaminated with noise and/or re-
verberation. SE finds application in many downstream tasks
such as hearing aids [1], speech recognition [2], and audio
conferencing [3]. Traditional SE algorithms rely on signal
processing techniques, leveraging mathematical assumptions
about speech and noise [4], [5]. However, modern approaches
are data-driven, and predominantly use deep neural networks
(DNNs). A common strategy consists in combining DNNs for
estimating spectral parameters (e.g., a correlation matrix or a
time-frequency spectrum) with a traditional spatial filter, such
as a minimum variance distortionless beamformer (MVDR)
or a multichannel Wiener filter [6]–[11]. Alternatively, some
algorithms directly estimate enhanced signals or filters via
DNNs [12], [13].

SE is typically evaluated at the utterance level using metrics
such as signal-to-distortion, artifacts, or interference ratios
(SDR, SIR, SAR) [14], [15]. However, Miller et al. [16]
emphasize the variability in phoneme noise tolerance, high-
lighting the importance of a nuanced understanding of how
phonemes, particularly consonants and vowels, are affected
by noise. Adachi et al. [17] reveal the ways in which different
phonemes are impacted by noise for both native and non-native
speakers, while Meyer et al. [18], [19] observe confusion
among phonemes within both human perception and automatic
speech recognition frameworks, indicating that consonants and

vowels are differently affected by the loss of information due
to noise exposure. This suggests that evaluating SE using
utterance-level metrics may overlook the detailed impacts of
noise on different phonemes and the algorithms’ processing of
these sounds. This has motivated us to evaluate SE algorithms
at the phoneme scale in a previous study [20].

However, beyond overall variability in phonemes, signifi-
cant acoustic variations between male and female voices reveal
that there are gender-specific differences in phonemes [21].
Gender perception in voices is mainly related to the fun-
damental frequency that is due to the length of the vocal
tract, which affects formant patterns [22], [23]. Calliope [24]
examined gender-based differences in vocalic formants, influ-
encing the performance of data-driven speech processing [25].
These studies highlight the need to consider phonetic gender
variations in SE technologies.

In this paper, we extend our previous work [20] by in-
vestigating the impact of gender and phonetic content on SE
algorithms. We motivate our approach by analyzing spectral
disparities in phonemes and gender. We evaluate three state-
of-the-art multichannel SE algorithms [6], [11], [26] in a
realistic simulated acoustic scenario using various metrics. The
results reveal that while overall enhancement performance at
the utterance level shows minimal gender differences, a deeper
analysis at the phoneme level uncovers distinct trends, with
female speech often exhibiting greater interference reduction
and perceptual quality improvements, particularly as noise
levels decrease.

II. METHODOLOGY

In this section, we describe our methodology for analyzing
the impact of SE algorithms on male and female speech at a
phoneme level.

A. Evaluation at the phoneme level

SE algorithms are typically evaluated at the utterance level,
which provides an overall measure of speech clarity and com-
prehension. However, Miller et al. [16] suggest that consonants
and vowels are impacted to different extents by the loss of
information caused by the presence of noise.

To illustrate this, we display in Figure 1 the spectrogram of a
clean speech signal and its mixture with a speech-shaped noise
(SSN, see Section III-A). We observe that the low-frequency
content of the clean speech is masked when mixed with the
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Fig. 1. Spectrograms of a male speech signal: clean (left) and mixed with
an SSN at -5 dB SNR (right).

noise, while only the sharp bursts at high frequencies remain
slightly visible. Such high frequency components are indica-
tive of phonemes that are characterized by their wide-band
acoustic content, such as plosives or fricatives. This motivates
evaluating speech across phonemes rather than solely at the
utterance level, as initiated in our previous work [20].

B. Evaluation depending on the gender of the speaker

Beyond phonemic variability, speakers of different genders
can introduce differences in speech acoustics. We illustrate
this phenomenon by displaying a range of plosive sounds
from male and female speakers in Figure 2, and we analyze
how male and female plosives respond to SSN, highlighting
spectral overlap and differential noise masking effects across
genders. This invites a closer analysis of how speech enhance-
ment algorithms might optimally address these gender-specific
phonetic characteristics.

Male plosives show strong intensity below 100 Hz, while
female plosives dominate at frequencies above 100 Hz. This
indicates a shift in spectral emphasis, with male speech
contributing more to the low-frequency range and female
speech being more prominent in the mid to high frequencies.
Both male and female plosives are partially masked by the
SSN, but female plosives maintain stronger magnitudes above
100 Hz. These differences also appear in near-close vowels
and fricatives at low noise levels, inviting further investigation
into male-female speech characteristics to better understand
their processing by SE algorithms.

III. EXPERIMENTAL SETUP

In this section we detail our experimental protocol. For
a reproducibility purpose, both our code and the pretrained
model weights are available online1.

A. Acoustic scenarios and dataset

We build a dataset from LibriSpeech [27], using the
train-clean-100, dev-clean, and test-clean sub-
sets for training, validation, and testing, ensuring balanced
male and female durations. For each subset, only 50% of
the data is used as clean speech, yielding 50h for training
and approximately 2.5h each for validation and testing. The
other 50% are used to generate SSN, contributing 30% of total
noise. SSN was chosen to provide controlled experimental

1https://github.com/Nasseredd/mcse-phg

Fig. 2. Spectrum of the noise and clean plosives for male and female speakers
at 0 dB SNR, computed from the dry signals.

conditions while preserving the spectral characteristics of both
male and female voices. The remaining 70% comes from
ecological sources in Disco-noise [11]. The validation set
follows the same process, while the test set uses only SSN.
SSN is generated by computing the discrete Fourier transform
(DFT) of five male and five female speech signal, randomizing
its phase, and applying the inverse DFT to ensure spectral
consistency.

We simulate a hearing aid setup with four microphones,
two on each ear. For training and validation, room impulse
responses (RIRs) are generated using Pyroomacoustics [28]
with RT60 between 0.15–0.4 s, and room dimensions of 3–
8 m (length), 3–5 m (width), and 2.5–3 m (height). Speech and
noise sources are randomly positioned, with signal-to-noise
ratios (SNRs) from -10 dB to 10 dB, computed on the dry
signals. For testing, we use measured RIRs [29] placing the
speech source at 0 degrees (directly ahead of the listener) and
the noise at 45 degrees to the right of the listener at SNR
levels of -5, 0, or 5 dB.

B. Phoneme segmentation

We use the Montreal Forced Aligner (MFA) [30] to segment
speech into phonemes, according to the international phonetic
alphabet (IPA) chart in MFA. The English MFA dictionary
v2.2.1 includes 13 phoneme classes (8 consonants and 5
vowels), and we adopt an extended classification from Monir
et al. [20], adding a vowel class for near-close phonemes /[I]/
and /[U]/.

C. Speech enhancement algorithms

We perform SE with three algorithms. Tango [11] is a hybrid
algorithm derived from the DANSE algorithm [31]. It employs
a convolutional recurrent neural network for estimating time-
frequency (TF) masks with binaural cues. FaSNet [26] is
an end-to-end time-domain beamformer. It processes time-
domain features with a dual-path recurrent network to estimate
spectral masks for beamforming. MVDR [6] is a frequency-
domain beamformer technique that uses a bidirectional long
short-term memory network to predict TF masks that are used
to estimate speech and noise covariance matrices. Note that our
implementation (including training and evaluation scripts) rely
on the Asteroid [32] and ESPnet [33] toolboxes. Full training
details (e.g., loss functions, optimizers, etc.) are available in
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Fig. 3. Input SIR at the utterance level and across phoneme categories and
genders at 0 dB SNR. Each violin plot represents the approximate distribution
of the data.

TABLE I
MEAN SIRin ACROSS GENDERS AND SNR LEVELS.

-5 dB 0 dB 5 dB
M F M F M F

Consonants -7.71 -7.87 -1.16 -1.45 4.49 4.07
Vowels -3.69 -3.79 2.10 1.90 7.46 7.19

Note: M = Male, F = Female.

our code. Finally, as this study does not aim to compare
algorithms, we average their results to focus on gender and
phoneme differences.

D. Evaluation metrics

We evaluate SE using the scale-invariant [15] SIR and SAR,
expressed in dB [14]. We report the input and output SIR,
respectively denoted SIRin and SIRout. SIRin is the SIR at the
ear level, thus it accounts for room acoustics (as opposed to
the SNR which is adjusted on dry sources). SIRout measures
the residual interference after performing SE. Similarly, the
output SAR (denoted SARout) assesses the overall amount of
artifacts after SE. We do not report the input SAR as it is
theoretically infinite when no processing has been applied.

Additionally, we report the perceptual evaluation of
speech quality (PESQ) [34], short-time objective intelligibil-
ity (STOI) [35], and hearing aid speech perception index2

(HASPI) [36] scores. To assess improvements in perceived
quality and intelligibility, we measure PESQ and STOI be-
fore (PESQin, STOIin) and after enhancement (PESQout,
STOIout), as well as their difference ∆PESQ and ∆STOI.

Finally, we feed the enhanced speech to five auto-
matic speech recognition models3 (Wav2vec, Wav2vec-lv60,
Conformer-CTC, Conformer-Transducer and Whisper [37]–
[39]), selected as proxies for evaluating speech intelligibility.
We then compute the average word error rate (WER) over
models, which is an overall measure of the impact of SE on
speech recognition performance.

To assess statistical significance, we conduct Mann-Whitney
U tests, a non-parametric method that is suited for comparing
independent samples drawn from two unknown distributions

2We use the HASPI-v2 version with the normal-hearing auditory model.
3Except for Whisper, all models are pre-trained on the gender-balanced

LibriSpeech dataset.

Fig. 4. Output SIR at the utterance level and across phoneme categories and
genders at 0 dB SNR.

TABLE II
MEAN SIRout ACROSS GENDERS AND SNR LEVELS.

-5 dB 0 dB 5 dB
M F M F M F

Consonants 7.87 8.13 14.38 17.18 20.11 23.35
Vowels 8.50 11.45 14.08 16.97 18.88 21.52

of any of the afore-mentioned metrics. The statistical tests
primarily compare male and female speech across different
levels: at the utterance level, within consonants and vowels
separately, and for each phoneme category. The method com-
putes a p-value for a given pair of input distributions, and we
consider the difference between categories to be significant
when p < 0.05. While all statistical analyses were conducted,
p-values are not systematically reported to ensure readability
and focus on the most relevant findings, which are discussed
in the text.

IV. RESULTS AND DISCUSSION

A. Analysis on input signals

First, we analyze the input signals before performing SE.
The results in terms of SIRin over phoneme categories and
genders at 0 dB SNR4 are displayed in Figure 3. We observe
that interfering noise at the utterance level is similar for males
and females, and no significant difference between gender can
be observed within each phoneme category.

Table I presents the mean SIRin values across SNR levels
for male and female speakers. The results show statistically
significant differences between consonants and vowels for both
male (p < 0.001) and female speakers (p < 0.002) across SNR
levels. However, no significant differences between genders
were found within each phoneme category at any SNR level.
This gender similarity extends across phoneme categories,
where no significant difference is observed, except for under-
represented laterals and taps. This suggests that speech sounds
has a greater influence on SIRin than genders.

B. Results after speech enhancement

1) Impact on interference: First, we analyze the impact of
SE in terms of noise reduction, as measured by the output

4Similar trends can be observed at -5 and 5 dB, but figures are omitted due
to space constraints. This also applies to Figures 4 and 5.
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Fig. 5. Output SAR at the utterance level and across phoneme categories and
genders at 0 dB SNR.

TABLE III
MEAN SARout ACROSS GENDERS AND SNR LEVELS.

-5 dB 0 dB 5 dB
M F M F M F

Consonants -1.33 -1.11 0.89 1.90 2.03 3.99
Vowels 1.21 1.69 4.12 5.01 5.56 7.18

SIR. We display in Figure 4 the output SIR at 0 dB across
utterance, phoneme categories and genders, while Table II
summarizes the mean SIRout for consonants and vowels by
gender across SNR levels. We observe in Figure 4 that SE
algorithms process male and female speech similarly at the
utterance level (p = 0.07). However, results in Table II show
significant performance differences at 5 dB and 0 dB for
consonants (p = 0.025 and 0.017) and vowels (p = 0.002 and
0.003). This suggests that the algorithms process interference
differently depending on gender-specific speech characteris-
tics. Nonetheless, at -5 dB, the difference for consonants
disappears (p = 0.064), likely because the interfering noise
masks differences in spectral and temporal cues. Despite
vowels also being susceptible to noise masking, we observe
gender differences (p = 0.001) at the output.

While the overall enhancement performance appears similar
across genders when averaged over entire utterances, a closer
look at individual phoneme categories in Figure 4 reveals
significant differences in nasals, plosives, fricatives, approx-
imants, and most vowel types. This suggests that male and
female speakers exhibit distinct acoustic properties in these
phonemes, which persist even after interference reduction. On
the other hand, affricates and sibilants show no significant
gender-based difference (p = 0.09 and 0.79, respectively),
likely because these phonemes naturally contain turbulent,
high-frequency energy, making them harder to distinguish
from background noise.

2) Impact on artifacts: Here we analyze the impact of SE in
terms of artifacts in the estimated signals. Figure 5 displays the
output SAR across phoneme categories and genders at 0 dB.
The results suggest that at the utterance level, SE algorithms
preserve female speech quality slightly better than male speech
(p = 0.02). This trend remains at 5 dB, but the difference
between genders becomes more pronounced at -5 dB.

Table III presents the mean SARout for consonants and
vowels by gender across SNR levels. The results show no

TABLE IV
MEAN SPEECH RECOGNITION AND PERCEPTUAL METRICS ACROSS

GENDERS AND SNR LEVELS.

Metrics -5 dB 0 dB 5 dB
M F M F M F

WER 70.20 61.37 31.62 27.20 17.90 16.52
STOIin 0.46 0.47 0.57 0.58 0.69 0.69
STOIout 0.61 0.62 0.75 0.75 0.82 0.83
∆STOI 0.15 0.14 0.17 0.17 0.12 0.13
PESQin 1.07 1.04 1.10 1.06 1.21 1.12
PESQout 1.19 1.19 1.41 1.46 1.67 1.76
∆PESQ 0.12 0.14 0.31 0.39 0.46 0.64
HASPI 0.38 0.47 0.84 0.81 0.96 0.92

significant gender differences for consonants (p = 0.24) and
vowels (p = 0.18) at 0 dB, or other tested SNR levels. This
indicates that, on average, the algorithm does not introduce
artifacts in a gender-biased way when considering broad
phoneme categories.

At the phoneme level, however, more nuanced differences
emerge. Plosives show a significant difference (p = 0.02), with
female speech having a higher output SAR, which means that
male plosives are more affected by artifacts. This suggests that
the algorithms show limitations in preserving plosive sounds
in male speech, possibly due to their stronger bursts and
lower fundamental frequencies. In contrast, nasals, affricates,
fricatives, approximants, and vowels do not show statistically
significant differences, suggesting that the algorithm affects
these sounds similarly across genders.

3) Impact on speech recognition: To evaluate the impact of
noise on speech recognition performance across genders, we
examine the WER at different SNR levels, which is displayed
in the first line of Table IV. As the SNR increases, the WER
decreases for both genders, indicating improved speech recog-
nition performance at lower noise levels. At -5 dB and 0 dB,
female speech consistently exhibits a lower WER compared
to male speech, suggesting that speech recognition models
handle female voices slightly better under noisy conditions
(p = 0.012 and 0.048, respectively). However, at 5 dB, where
speech is more dominant over noise, the WER difference
between male and female speech is not significant, confirm-
ing that gender-related effects diminish as noise interference
decreases.

4) Impact on perceptual metrics: Finally, we investigate
gender-based variations in terms of perceptual metrics. The
mean PESQ, STOI, and HASPI values across SNRs are
presented in Table IV. Both males and females show similar
patterns in input and output STOI, with a steady increase as
SNR improves, and the gap between input and output remains
fairly consistent across genders. However, PESQ scores exhibit
increasing disparity: female input scores are lower than males’
across all SNR levels, but their output scores tend to surpass
males’ as SNR rises. STOI improvements, in contrast, remain
relatively stable for both genders, whereas PESQ shows a more
significant difference, with female speech exhibiting greater
improvement as SNR increases. Additionaly, HASPI scores
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indicate that female speech tends to retain slightly higher
intelligibility, particularly at lower SNR levels.

Overall, the results across metrics indicate that female
speech consistently shows higher perceptual improvements
(higher PESQ and HASPI scores) and lower WER at most
SNR levels, suggesting a stronger benefit from SE for females.
This aligns with trends observed in SIR and SAR, where fe-
male speech exhibits greater interference reduction and fewer
artifacts, suggesting that the acoustic characteristics of female
speech are more effectively enhanced by the SE algorithms.

V. CONCLUSION

This study highlights the need for a nuanced evaluation of
multichannel SE algorithms, considering the distinct acoustic
characteristics of phoneme categories and gender differences.
No utterance-level SIR differences were found between gen-
ders, but most phonemes, except affricates and sibilants, had
better interference reduction in female speech, which reveals
variations that are overlooked in utterance-level analysis. For
artifacts, a difference was found at the utterance level and for
plosives, but not for other phoneme categories.

These findings can be exploited in future work, e.g., by inte-
grating filtering algorithms that account for phoneme-specific
spectral properties into SE algorithms, or optimizing deep
SE algorithms with frequency-weighted / phoneme-informed
losses that prioritize spectral regions that are perceptually
important. Besides, one can leverage phoneme coarticulation
through the use of consonant-vowel and vowel-consonant se-
quences to design SE algorithms that better capture transitional
dynamics and ensure a more natural speech flow.
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