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Abstract—Estimating the position of animals over time pro-
vides useful additional information for understanding animal
behavior and for ecology studies in general. A common approach
for this task is to deploy microphone arrays (nodes) and use the
acoustic signals to estimate the direction of arrival (DOA) of the
sound source. DOAs from different nodes are then intersected
to find the source’s position. However, when multiple sources
are active, the DOA association problem (AP) arises as it
becomes unclear which DOAs correspond to the same source.
This problem is further exacerbated in bioacoustical scenarios
where large distances increase the error in the DOA estimates,
and sounds often overlap in both time and frequency. In this
paper, we propose a method to tackle the DOA AP in such
challenging environments. In particular, we beamform to each
of the estimated DOAs and extract features that characterize
each of the detected sources, then, we associate features from
different nodes based on their similarity, resulting in groups of
DOAs that belong to the same source. Preliminary simulations
suggest the potential of the proposed method for scenarios with
missed detections and unknown number of sources, even when
the number of microphones available at each node is limited.

Index Terms—sound source localization, wildlife monitoring,
direction of arrival, data association problem.

I. INTRODUCTION

Wildlife acoustic localization (WAL) is the task of estimat-

ing the position of one or more animal individuals using acous-

tic signals obtained from microphones that have been deployed

in outdoor environments. This has become a useful task within

the ecological context as the knowledge of animals’ positions

over time has contributed to understanding animal interactions,

quantifying species densities, and observing animal responses

to various disturbances, among several other purposes [1],

[2]. Although there has been significant research into sound

source localization in general [3], WAL presents a number of

unique challenges, including but not limited to simultaneous

activity of multiple sound sources overlapping in time and

frequency, low signal-to-noise ratios of acoustic signals due to

propagation attenuation and environmental noise, and sparse

microphone arrays with little to no synchronization.

A common scenario for WAL is the deployment of spatially

distributed microphone arrays (also referred to as nodes)

across the region of interest. In the single-source case, each

node estimates a direction of arrival (DOA) of the sound, after

This research work was carried out at the ESAT Laboratory of KU Leuven,
in the frame of KU Leuven internal funds C14/21/075, and FWO Research
Project G0A0424N. This project has received funding from the European
Union’s Horizon 2023 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 101116715.

which the source’s position can be estimated by intersect-

ing these DOAs [4], [5]. When multiple sources are active,

however, each node will estimate multiple DOAs, resulting

in DOA intersections that yield ambiguous source locations,

a problem referred to as the direction-of-arrival association

problem (DOA AP) [6]–[8]. In this paper, we assume that

DOA estimates are available from some number of microphone

nodes, and focus on tackling the DOA AP within the wildlife

monitoring context.

To address the DOA AP in general, one possible solu-

tion is to extract features from detected sources and then

use them to guide the DOA association. For instance, the

authors in [7] proposed to construct a histogram, based on

how the frequency components of the signals at each node

are distributed among detected sources. These histograms

were subsequently grouped based on their similarity, resulting

in a grouping of DOAs corresponding to the same source.

However, this method assumes a known number of sources,

and signals that satisfy the window-disjoint orthogonality,

making it unsuitable for bioacoustic scenarios [1], [9]. An

alternative approach was proposed in [6], where the estimated

associations were obtained by using only the DOA estimates.

To achieve this, the authors selected the optimal groupings

of DOAs by maximizing the ratio of two likelihoods: one

representing the probability that the detections come from

real sources and another assuming they are all false alarms.

The optimization problem was then re-framed as a source-

destination assignment problem and solved using Lagrange

relaxation. While it does not rely on the previously mentioned

assumptions, its performance degrades in low signal-to-noise

ratio (SNR) conditions, specially when the number of sources

increases.

In this paper, we propose yet an alternative method to

approach the DOA AP, but one that is more suitable for a

wildlife monitoring context, taking into account the aforemen-

tioned challenges. The proposed method consists of two steps.

Firstly, we perform a beamforming-based feature extraction

step. This involves applying a beamformer to the available

DOAs from each node in order to obtain an estimate of the

corresponding source signal. These signals are then fed into a

pre-trained species classification neural network to extract the

vector embeddings. In the second step, we use the obtained

embeddings to compute a similarity metric that quantifies the

quality of a candidate association, after which the correct as-

sociations are found by solving a fractional multi-dimensional
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assignment problem (F-MDAP). Monte Carlo simulations are

used to gauge the potential of the approach in relation to the

DOA estimation error, the number of microphones used for per

node, and background noise levels. The results suggest that

high association accuracies are possible for several relevant

cases and warrants further evaluation on more realistic data.

The remaining of the paper is organized as follows. Section

II formulates the DOA AP for a general scenario. Section III

describes the proposed method in detail. The evaluation of the

proposed method via simulation is presented in Section IV.

Finally, Section V provides the conclusions.

II. PROBLEM STATEMENT

We consider a set of N microphone nodes, each consisting

of M microphones, deployed in the region of interest. The

geometry of the arrays, and the positioning of each node can

be any configuration that suits the specific requirements of the

wildlife monitoring task. For each node, we assume that we

have access to a set of estimated DOAs from multiple locally

detected sources. In this work we consider 2D localization,

meaning that only one angle is needed to represent each

DOA. Figure 1 illustrates a typical scenario with four nodes

(light blue circles) each consisting of a different number of

microphones (smaller dark blue circles). Nodes 1, 3, and 4
have two estimated DOAs, while node 4 has only one. The

true number of sources in this scenario is three, depicted by

the orange bird silhouettes. There is, however, an ambiguity

as to which DOAs from each node correspond to the same

true source (the so-called DOA AP). The consequence of this

ambiguity is shown in Fig. 1, where the pairwise intersections

of the estimated DOAs from each node yields a number of

ghost sources (grey bird silhouettes) in addition to the true

sources. Our goal in this work is therefore to determine the

correct associations among DOAs from different nodes in

order to ultimately determine a source’s location within an

outdoor environment.

III. PROPOSED METHOD

Our proposed method to address the DOA AP consists of

a feature extraction step, followed by a multi-dimensional

assignment problem (MDAP) to be solved. As it is challenging

to separate multiple sources due to overlap in both time

and frequency (for instance, when sources correspond to the

same species), each node firstly applies spatial processing

(beamforming) to the direction(s) specified by that node’s

estimated DOA(s). These beamformed signals are then fed

into a pre-trained species classification neural network to

extract the vector embeddings. In this work, we use BirdNet

[10] for this purpose, however any other relevant species

classifier can be substituted. In the second step of the proposed

method, these embeddings are used as features to compute an

association similarity score. By maximizing the total similarity

score, the estimated associations can then be determined. For

this optimization problem, we use a variation of the classical

MDAP [11] that allows for variable assignment cardinality.
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Fig. 1: Example of a common multi-source scenario in which

the DOA AP arises. Nodes are illustrated as the light blue

circles, each of which consists of a different number of

microphones depicted by the smaller dark blue circles.

A. Feature Extraction

We start from a set of noisy DOA estimates
{

θ̂nin(t)
}

at a

time instant t, from each node n (n = 1, ..., N). We assume

that each of the DOA estimates is modeled by

θ̂nin(t) =











θnin(t) + ηnin − 2π, θnin(t) + ηnin > 2π

θnin(t) + ηnin + 2π, θnin(t) + ηnin < 0

θnin(t) + ηnin , otherwise

, (1)

where θnin are the true (but unknown) DOAs from the node n

to the in-th (in = 1, ..., Pn) detected source, Pn is the number

of sources detected by the n-th node, and ηnin is some DOA

estimation error, modeled by a Gaussian distribution N (0, σ2
η),

with standard deviation ση . Note that θnin is in the range [0, 2π],
and the conditions θnin(t) + ηnin > 2π and θnin(t) + ηnin < 2π

guarantee that the noisy estimates θ̂nin remain in that same

interval. Since BirdNet operates on three-second-long input

signals, we extract the corresponding three-second segment of

microphone signals from each node centered around the detec-

tion instant, t. These signals are transformed to the short-time

Fourier transform (STFT) domain, resulting in the complex-

valued signal, xn
m(l, k), where l = 1, . . . , L is the time-frame

index with L frames, k = 1, . . . ,K is the frequency bin index

with K frequency bins, and m = 1, . . . ,M is the microphone

index with M microphones. In the following steps, we omit

the node index n since the process is the same for every node.

For each node, and time-frequency bin index, we apply the

narrowband minimum power distortionless response (MPDR)

beamformer [12]

yin(l, k) = w
H
in
(k)x(l, k), (2)

where {.}H is the Hermitian transpose, x(l, k) =
[x1(l, k), . . . , xM (l, k)]T is the vector of microphone signals

from each node ({.}T is the transpose), and win(k) =
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[win,1(k), . . . , win,M (k)]T is the corresponding MPDR beam-

former given by

win(k) =
R

−1(k)a(θ̂in)

aH(θ̂in)R
−1(k)a(θ̂in)

, (3)

where R(k) is an estimated covariance matrix using all

time frames, L, at frequency bin, k, with components

given by Ri,j(k) = 1
L

∑L
l=1 xi(l, k)x

∗
j (l, k). a(θ̂in) =

[

a1(θ̂in), . . . , an(θ̂in)
]T

is the steering vector [12] of the array

towards the direction θ̂in with

am(θ̂in) = e−j2π kfs
L

τm(θ̂in ); m = 1, ...,M, (4)

where τm is the time delay at the m-th microphone relative to

a fixed reference time and fs is the sampling frequency. Under

far-field assumption, τm is determined by the array geometry.

Performing this process across all frequency bins k and all

nodes n, results in the STFT representation of the broadband

beamformed signals for each of estimated DOA of every node,

denoted as Y n
in
(l, k). These signals are then fed into BirdNet,

where the vector embedding of the final hidden layer is used

as a feature vector. We denote this as E
n
in

, the feature vector

extracted from the in-th detected source of the n-th node.

Since an initial estimate of the source signal is obtained by

beamforming to a specific estimated direction, the extracted

feature can be interpreted as a representation of the source

signal received from that direction. This means that if we com-

pare feature vectors from different nodes, those corresponding

to the same source are expected to be similar. Consequently, if

we associate features based on their similarity, we can obtain

an estimate of the DOA associations.

B. Multi-dimensional Assigment Problem

In this Section, we frame the DOA AP as an MDAP.

Our goal is to associate DOAs among different nodes that

correspond to the same real source using the extracted features

E
n
in

(in = 1, ..., Pn). To handle missed detections, we add

a dummy feature E
n
0 to each node, so that if a source is

missed by a node, the dummy can be assigned instead. Hence

we refer to E
n
in

as real features and E
n
0 as dummy features.

The problem translates into finding the set of feature vector

associations such that all of the feature vectors corresponding

to the same source are associated together. Defining an associ-

ation as the N -tuple Ai1,...,iN =
{

E
n
in

}N

n=1
, which means that

the features E
1
i1

from node 1, E2
i2

from node 2,..., and E
N
iN

from node N were assigned together to the same source, the

goal is to find one association per active source. We call the

complete set of associations an assignment. As an example,

in the scenario illustrated in Fig. 1, the correct assignment

involves the associations A2,1,2,0, A1,2,1,0, and A0,0,0,1.

Let us start by defining the similarity between features in

a possible association Ai1,...,iN . Let {1, ..., n′, ..., N ′} be the

subset of nodes contributing with real features to the associ-

ation, then, the similarity value Ti1,...,iN for the association

Ai1,...,iN , with N ′ real features and Nd = N − N ′ dummy

features is given by

Ti1,...,iN =
2W (Nd)

N ′(N ′ − 1)

N ′

∑

n′=1

N ′

∑

m′=n′+1

S(En′

in′
,Em′

im′
), (5)

where S(A,B) = A.B
∥A∥.∥B∥ is the pairwise cosine similarity,

and W (Nd) is a weighting function used to penalize the use of

dummies in the association. A deeper analysis on this function

is provided in Section IV. If there is just one real feature

used in the association, its similarity is set to the maximum

similarity obtained in the rest of associations.

In a classical MDAP framework, the goal would be to find

the assignment that maximizes the sum of similarities between

associated features. However, in our approach, the number of

associations is variable, as it depends on the number of active

sources P , which is unknown. This makes the sum of similari-

ties a suboptimal objective function. Instead, we propose to use

the average similarity between assigned associations. By doing

this, the algorithm equally considers every possible number

of active sources. The problem translates into the fractional

programming optimization problem:

max
xi1,...,iN

∑P1

i1=0 · · ·
∑PN

iN=0 Ti1,...,iNxi1,...,iN
∑P1

i1=0 · · ·
∑PN

iN=0 xi1,...,iN

s.t.

P2
∑

i2=0

· · ·
PN
∑

iN=0

xi1,...,iN = 1, i1 = 1, ..., P1

P1
∑

i1=0

· · ·
PN
∑

iN=0

xi1,...,iN = 1, i2 = 1, ..., P2

...
P1
∑

i1=0

· · ·

PN−1
∑

iN−1=0

xi1,...,iN = 1, iN = 1, ..., PN ,

(6)

where xi1,...,iN are the decision variables defined as

xi1,...,iN =

{

1 if Ai1,...iN is assigned

0 otherwise
. (7)

The constraints serve to ensure that only feasible assignments

are considered. A feasible assignment meets the following

conditions:

1) Every real feature must be assigned once,

2) Each association can contain only one feature per node,

3) Dummy features can be assigned multiple times.

The proposed F-MDAP can be solved by applying the

Dinkelbach’s Algorithm [13], which is NP-hard as the number

of possible associations grows exponentially with the number

of dimensions (nodes in our case). In the wildlife monitoring

scenario, however, it is expected that the number of nodes

used to detect the same sources within some area is limited.

Consequently, it is possible to find the exact solution to (6).

When the total similarity is maximized, we end up with a

set of P̂ associations A =
{

A
j
i1,...,iN

}P̂

j=1
, where P̂ is the

estimated number of active sources. Each association in this
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set tells us which are the features, and therefore, the DOAs

from each node that belong to the same real source.

IV. RESULTS

To evaluate the proposed method, we conducted a series of

Monte Carlo simulations in a 30m2 free-field environment

with 4 nodes arranged in a 10m×10m grid (similar to

Fig. 1) centered in the middle of the environment. Each

node is equipped with a circular microphone array with M

microphones spaced 0.05m apart (the impact of M is observed

in Sec. IV-C). In each simulation, the sources were randomly

selected from a pool of eight sound recordings taken from

xeno-canto1. The pool consists of four individuals of the same

species Anthus trivialis, one Tetrao urogallusm, one Vulpes

vulpes, one Poecile montanus, and, to include external sources,

one aircraft. It is important to highlight that we included

three types of sounds that are not present in the training

dataset of BirdNet (Vulpes vulpes, Poecile montanus, and the

aircraft). For each experiment, we performed 100 Monte Carlo

simulations, randomly sampling the source positions from a

uniform distribution across the environment.

We evaluated the performance under different noise con-

ditions. To achieve this, we introduce uncorrelated Gaussian

noise at each microphone, with noise power level Lnoise

ranging from 50 dB sound pressure level (SPL) to 60 dB SPL.

Source signals were scaled to 80 dB SPL before propagation,

leading to significantly varying received source signal power

levels at each microphone, as they depend on the propagation

distance. Consequently, the resulting SNRs vary for each

source-microphone pair. Missed detections are added to the

simulations when two sources have an angular separation

lower than the node’s angular resolution (which is related to

the standard deviation of the DOA estimation error, ση), or

when a source is masked by background noise or other by

sources, based on the received power at the microphones. The

code used to implement the proposed method and conduct the

experiments is available online2.

The similarity metric defined in (5) requires the choice of

the weighting function W (Nd). We parametrize W (Nd) with

the parameter α as:

W (Nd) = 1− αNd, Nd = 1, 2, 3. (8)

High values of α strongly penalize the use of dummies, which

is beneficial when the percentage of missed detections is low,

i.e., when it is expected that the majority of nodes detected the

same source. Conversely, if missed detections are expected to

be frequent, a lower value of α reduces the penalty, making

the function more tolerant to missed detections. During the

experiments, we fix α to a value of 0.03, as this provides

a robust balance across different scenarios without requiring

prior knowledge of the missed detection rate.

1www.xeno-canto.org
2https://github.com/AlejandroMJR/DOA_Association_WAL

A. Metrics

To validate the results, we compute two different metrics.

The first metric is the ratio of correct associations (RCA),

which evaluates the accuracy of an assignment. It is defined

as the ratio between the number of estimated associations in

A =
{

A
j
i1,...,iN

}P̂

j=1
, that are present in the set of ground

truth associations G =
{

G
j
i1,...,iN

}P

j=1
, to the total number

of true associations P . However, this metric does not always

reflect the true performance of the method. For instance, an

outcome with partially correct associations will always be

evaluated with a score of 0, even if the majority of DOAs

were correctly assigned. To address this limitation, inspired

by [7], we introduce the ratio of correct pairwise associations

(RCPA), which measures the number of correctly assigned

pairs inside every association relative to the total number of

possible pairs. This metric provides a more fair evaluation by

accounting for partially correct associations.

B. Effect of DOA estimation error

We start by analyzing the impact of the DOA measurement

error on the accuracy of the method. Fig. 2 shows the RCA

(Fig. 2a) and RCPA (Fig. 2b), as a function of the standard

deviation of the DOA measurement error ση , using nodes

with M = 4. Results are presented for 3 and 5 sources,

with varying background noise levels. Given that the accuracy

of the DOA estimation decreases in large environments, we

consider values of ση up to 6◦. Since ση is related to the node’s

angular resolution, increasing it also rises the percentage of

missed detections. As expected, larger values of ση reduce

the accuracy; however, the effect is not critical, as revealed by

the RCPA, which remains relatively constant. These results

exhibit robustness not only to large measurement errors, but

also to missed detections. In contrast, if we look at the effect

of the different noise levels Lnoise, it is clear that very high

noise levels affect the performance. This is attributed to lower

SNRs values for each of the received source signals, and to the

higher percentage of missed detections due to noise masking.

C. Effect of number of microphones per node

For these simulations we set ση = 3◦, and tested cases with

3 and 5 sources under varying values of Lnoise, and varying

numbers of microphones per node, M . Fig. 3 depicts the RCA

(Fig. 3a) and RCPA (Fig. 3a) as a function of M . We observe

that the performance is considerably reduced for M = 2,

which is presumably due to the low angular resolution of

such a small array, and spatial aliasing issues, adding errors to

the feature extraction step. However, increasing the number of

microphones to M ≥ 3 results in a substantial improvement,

particularly for the case of 3 sources, where the RCPA reaches

more than 70% for all noise levels, indicating that the proposed

method maintains its performance even when the number of

microphones per node is limited. Higher M provides better

angular resolution, which is beneficial in cases with a high

number of sources, as their angular separation decreases. This

improvement is reflected in the results for 5 sources.
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(a)

(b)

Fig. 2: RCA (a) and RCPA (b) accuracy as a function of ση ,

for 3 and 5 sources with varying background noise levels.

V. CONCLUSIONS

In this work, we have proposed a two-step method to ad-

dress the direction-of-arrival (DOA) data association problem

for wildlife acoustic localization in scenarios where spatially

distributed microphone arrays (nodes) are deployed across a

region of interest for wildlife monitoring. Given noisy DOA

estimates from each node, the first step applies a beamformer

to obtain an estimate of the source signal, which is subse-

quently fed into a species classifier, yielding a corresponding

vector embedding. Vector embeddings are then used in a

second step to define a similarity metric for a fractional multi-

dimensional assignment problem, which is solved to retrieve

the correct DOA associations, and hence the location of the

respective sound source. Simulations in scenarios involving

DOA errors, missed detections, and varying numbers of mi-

crophones per microphone node have suggested a promising

performance of the method. To fully gauge its potential,

however, a more extensive evaluation using real data from

wildlife passive acoustic monitoring scenarios is required.
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