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Abstract—The momentary localization of a single sound
source, in an environment with microphones distributed at known
positions, can be done with multilateration, using time-difference-
of-arrival (TDOA) estimates. However, TDOA estimates from
cross-correlation are noisy in real environments, and a robust
multilateration method must handle outliers. Assuming con-
straints on the smoothness of movement over time, the location
estimate can be improved for both stationary and moving sources.
In this work, the smooth motion assumption is explored in dif-
ferent stages of a RANSAC-based (Random Sample Consensus)
implementation. The evaluation is done on real recordings from
the public LuViRA dataset, giving the first 3D baseline result on
the dataset. Each of the proposed steps is shown to reduce the
localization error compared to the benchmark method.

Index Terms—TDOA, GCC-PHAT, smooth motion, RANSAC,
SSL

I. INTRODUCTION

Sound source localization (SSL) from time-difference-of-
arrival (TDOA) estimates is a well-known problem with many
applications, see [1] for an overview. Here, the sound source is
a singular, moving speaker playing music, recorded by several
stationary, synchronized microphones with known locations.
The setup can be seen as a distributed acoustic sensor network,
such as a smart room, but we will not cover the related
calibration and communication problems. The SSL task is thus
to continuously locate the sound source without access to the
original sound, over time forming a 3D trajectory.

A possible computational pipeline for accurate localization
first obtains TDOA estimates using cross-correlation (GCC-
PHAT) [2], then applies the RANSAC (Random Sample
Consensus) [3] estimation of the sound source position in
each single time frame. RANSAC can find good parameters
to a known model even with outliers present. The method
randomly samples the selection set repeatedly to find the
estimate that fits the most samples, using the voting set when
measuring consensus. Even for outlier-resistant multilateration
[1], the presence of reverberation and noise can introduce
ghost source estimates. Due to that, the measurements may
not form a Gaussian distribution, and tracking and smoothing
are additional mechanisms to stabilize the estimates.

There are many related works focusing on other approaches
to the problem, and we will only list a few. Sanitizing TDOA
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and grouping consistent measurements to aid multi-source
estimations is introduced in [4] and later variants. When the
microphones are in a relatively small and well-formed array,
direction-of-arrival (DoA), is a simplification over full 3D
localization. Steered Response Power approaches are robust
[5], but the grid search makes them impractical for a 3D
space. There are also a variety of machine learning methods,
from TDOA segmentation [6] to full end-to-end solutions [7].
A comprehensive overview of the existing SSL techniques is
provided in [8], [9].

A related task is object tracking, e.g. in 3D radar mea-
surements. Multi-object tracking may be achievable through
multi-hypothesis trackers [11]. The same idea can be useful to
track and discard temporary ghost objects appearing from non-
direct path TDOA in a single-source scenario. Tracking often
depends on recognizable features, such as a visual appearance
in a camera view, or a motion assumption. A Kalman filter is
a way to track the likely position over time. Both the original
and the extended Kalman filter assume a Gaussian model for
the measurement error, as well as for the motion error [12].
Since this assumption is not always true, particle filters [13]
and Gaussian mixture filters [14] can be useful to avoid that
restriction. For sound source tracking, the context is again
often reduced to DoA and microphone arrays, which is not
directly applicable for our case.

Based on the available studies, we argue that the use of
smoothness constraints in the context of 3D SSL is not well
studied. Although RANSAC is frequently used to eliminate
outliers within a time frame, it is rarely utilized to enforce
temporal smoothness. We further consider fracking distinct
from smoothing, as they can work together.

Our study aims to bridge this gap by leveraging the smooth-
ness assumption on a realistic dataset, the challenging LuViRA
dataset [15]. We examine how smooth motion constraints can
improve SSL estimates and where they best integrate into
the algorithm pipeline. To verify improvements, we extend
the SFS2 framework [1], an open-source implementation of
a multilateration algorithm already able to handle noise and
reverberation fairly well. We use traditional (non-learning)
methods because they are interpretable and do not rely on
the availability of extensive training data.
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Fig. 1. The SFS2 pipeline illustrated for the RC2 trajectory in 2D. Used under CC-BY license from [10].

II. BACKGROUND
A. Dataset

The LuViRA dataset [15] provides synchronized streams of
video, radio and audio for a robot moving in an indoor area
with no internal walls. Being an indoor use-case, noise and
reverberation are apparent challenges. There are 11 station-
ary microphones that record the continuous sound from the
moving sound source, mainly from a speaker playing back
music, but also other noise in the room. The dataset provides
extensive ground truth (GT) from a multi-camera motion track-
ing system, of which our experiments use the 3D positions.
Because of how the microphones are spread out at different
heights, the SSL is inherently a 3D localization problem. The
speaker is mounted on top of the robot, approximately having
a constant height, but we do not provide that information to
the algorithm. Investigating the more general 3D problem is
as well motivated by the slight height differences due to the
sloping floor.

The robot movement trajectories are of different types and
these experiments use the audio from the so-called “random”
trajectories. We will refer to the abbreviated names, e.g. RC1
and RC?2 for the pre-programmed circular trajectories, RL1 and
RUT1 for the letter-shaped and RM1 to RM6 for the manually
controlled, irregular trajectories. Note that RM1, RM2 and
RM6 have people moving around in the measurement area,
providing additional noise and line-of-sight interruptions. The
RR1 and RR2 are excluded, since the audio played back
on the speaker is not music, but chirps (as for the Grid
trajectories). The RD2 is missing the processed ground truth
and is discarded. The playback during RM6 faded after 48
seconds, so we use a shortened RM6x trajectory of that length.
The single missing microphone recording of RM4 is replaced
with silence to have a consistent setup.

B. Location estimation from TDOA estimates

The SFS2 framework! has a number of steps that can be
combined to form an SSL pipeline. We will refer to these
conceptual steps as A, B, C, etc. and describe them in more
detail later. A pipeline is illustrated in Fig. 1: Input from 11
microphones (first panel) forms 55 unique pairs and TDOA is
estimated using GCC-PHAT (second panel). The third panel
(step A) shows the noisy results when robust multilateration
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combines the TDOA from all pairs for an initial location
estimate for each time frame separately. The final panel shows
the refined estimates (as x- and y-coordinates over time) after
further localization improvement steps.

SFS2 has a background from [16], [17] and the Structure
from Sound [18] concept. The Matlab implementation is a
research platform for SSL and microphone self-calibration.
The core structure of the pipeline is presented in [1], which
focuses on developing a robust RANSAC scheme for initial es-
timates of 3D positions, through the selection of a set of inliers
among the TDOA estimates. This is our step A, described in
Section II-D below. In the reference, the outlier avoidance may
have been limited to TDOA in the multilateration phase, but
in our pipeline it is also a separate step B (Section III-B). The
authors of [1] further consider improvements from smoothness
constraints and suggest a nonlinear optimization (what we call
C, see Section III-C).

Our implementation of the ABC pipeline was already used
for a 2D benchmark on LuViRA data in [10]. However, the
specific algorithm was not presented, nor was the context to
motivate that smoothing, and we provide that contribution
here. We will in addition extend the pipeline with a novel
linear motion optimization (D) and experiment with TDOA-
agnostic filtering (O). We study different combinations of steps
and validate the effectiveness of such combinations on real
data. The ABC method is taken as the baseline for this work.

C. Estimating TDOA

The pipeline processes synchronized audio streams from
a fixed number of microphones (m). The audio is sectioned
into n frames of 2048 samples, allowing overlap by starting
a new frame every 960 samples. For each microphone pair
GCC-PHAT provides a moving correlation measure, which
estimates the audio time-difference of the pair. This lag is the
TDOA if there is a single sound source and no reverberation.
In practice, the maximum correlation will not always match
the true TDOA. SFS2 intends to be resilient to such noise, by
keeping several peaks from each pair as the possible TDOA
for the time frame.

We will refer to the set of TDOA estimates for the sequence
of frames as w. Each frame takes the four largest peaks
as putative (noisy) measurements of the real TDOA, e.g.
7i;(tk,p) € u being the pth peak (p = 1,...,4) of the kth
time frame (k = 1,...,n) for the microphone pair (7, j). Note
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that we expect only one estimate per frame to be the best
one, and that it may still be slightly off from the true TDOA.
For certain frames none of the estimates will be within an
acceptable margin, and the remaining estimates are outliers.

D. Single-frame multilateration (A)

The audio processing and TDOA estimation can be con-
sidered an initial precondition. The next step is to combine
the TDOA into the most likely 3D location for the window.
This is known as multilateration, in SFS2 using the RANSAC
paradigm where all microphone pairs are joined to vote for
the best location. A vote is cast when a proposed position
would match the TDOA of that pair within a threshold, using
the known microphone positions and direct path geometry.
The selection part could propose (random) positions directly,
but in SFS2 the idea is to use a “minimal solver”: From
a random selection of three TDOA estimates, eight possible
source positions can be quickly calculated [1]. This is again
based on the direct path geometry and akin to solving a system
of polynomial equations in a complex space. Three TDOA
estimates cannot pinpoint a single solution and each RANSAC
selection gives eight positions to vote for. Repeating the
selection step several times, the goal is to find the true position,
with the assumption that it is the most voted for location
estimate. With random selection from a TDOA set with mostly
outliers, many of the solutions are not valid. Mathematically,
complex solutions could be discarded as invalid, but due to
measurement noise and arithmetic imprecision, the current
implementation keeps the real part as a safeguard and trusts
voting to eliminate the invalid selections. If the number of
votes for any position is below a set threshold, the estimate
for that frame is considered invalid.

The output from A is (at most) a single 3D position
per frame, a sequence we will refer to as s. The putative
TDOA estimates u and the microphone positions are kept
for use in later steps. Method A can be used to estimate the
microphone positions, but we will read the stationary positions
per trajectory from GT.

E. Local bundle optimization (L)

The estimate for the frame may be adjusted to better fit the
TDOA inliers (those that voted) through least-squares mini-
mization. This is a brief iterative local optimization (Equation
(7) of [1]), which is not considered a separate step, but is
included in other steps.

III. SMOOTH MOTION ASSUMPTIONS

Sound source motion is often smooth. Commonly used
motion models are stationary and constant speed, with an
added noise term that allows slow changes in e.g. position,
speed or acceleration. Although a loss function for optimizing
3D positions can be derived from a motion and measurement
model, solving the optimization problem is difficult, especially
when finding the initial estimate.

Our way to make use of the smooth motion assumption is
instead to assign the selection set and voting set from a wider

window of time frames. A traditional zero-size window means
that the minimal initialization is taken only from the current
time frame, and only the current time frame gets to vote. In a
low velocity setting, the true source location of adjacent time
frames is likely very close to the true location for the current
frame, thus the true TDOA peak of this frame should also be
close to the TDOA of adjacent frames. Allowing a selection
window of “size” 25 includes the current frame as well as
25 frames before and 25 frames after. With an expected inlier
ratio of less than one in four, it does not increase the chance of
a successful random selection, but the higher amount may still
make it worthwhile as long as enough iterations are allowed. In
addition, with the assumption that outliers are mostly random,
increasing the voting window is directly influential to get a
majority vote on a proper selection. This is in line with the
promise of RANSAC. The same argument holds for higher
velocity or low acceleration if the window size is small.

A. Widened multilateration (A’)

Step A uses only the current time for both selection and
voting. Would wider windows be worthwhile? The initial
estimate is important to get right, but it is hard to apply any
linear motion constraint on TDOA, since each pair sees a
separate motion characteristic. It is likely more efficient to
do so already in the TDOA detection step.

It is possible to increase the voting window, assuming a low
velocity motion. It is still important to take many samples to
get a fair coverage, and evaluating each hypothesis becomes
slow with a large window. Preliminary analysis shows that
the outlier avoidance in step B gives good results with the
large voting window, even from a noisy initial estimate, so we
continue to use the unmodified A.

B. Outlier avoidance (B)

We suggest step B as an outlier remedy, using the low
velocity assumption in two ways. First, we increase the voting
window, so that there is a stronger chance of votes in the
vicinity of the true location. Second, the RANSAC selection
is taken directly from the 3D estimates s and thus skips TDOA
outliers and extraneous solutions from the minimal solver.
With only one hypothesis per frame, even a large selection
window has a low runtime penalty.

Two conditions control the results of this step, the avail-
ability of “good estimates” in the neighborhood and “proper
voting” within the neighborhood. Good estimates means that
at least some adjacent frame (including the current frame, of
course) already has an estimate close to the GT of this frame.
Proper voting requires that consensus approves the correct
estimate, i.e. enough TDOA in the voting set matches GT and
any other misguided voting cluster has fewer votes. There are
no guarantees that B always has these beneficial conditions,
but the conditions are likely, and empirically, using medium
size windows shows promising results.

The current implementation simply copies the highest vote
hypothesis to the current frame, which may cause clumping of
estimates. It would be possible to instead infer a linear motion
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TABLE I
RESULTS FOR THE MAIN METHODS ON EACH TRAJECTORY (ROWS). NOTE THAT THE PROPOSED METHOD (ABCD) CONSISTENTLY
OUTPERFORMS THE OTHERS. THE RESULTS ARE BASED ON THE ABSOLUTE ERROR (3D DISTANCE IN CM) FROM GT TO THE ESTIMATED LOCATION.

Traj- GT Method: A Method: ABC Method: ABCD
ectory # samples | Mean SD Median | Mean SD Median | Mean SD Median
RCI 4691 107¢  85.6°  92.6° 214 248 11.0 20.0 252 9.47
RC2 4701 90.8>  78.4b 68.1° 112 438 10.7 11.0 2.80 10.8
RDI 5002 133¢ 101¢ 123¢ 30.1 39.8 10.2 28.6 38.8 8.97
RL1 2707 115¢  81.4¢ 113¢ 852  4.89 6.90 8.45 3.57 7.52
RM1 5532 1000 84.3b 79.9b 349 450 12.8 335 43.7 11.6
RM2 5448 135¢  90.8¢ 129¢ 392 419 23.6 36.1 44.0 18.2
RM3 5265 73.3¢ 703 49.9¢ 102 824 7.64 8.06 4.37 7.12
RM4 4655 147¢  94.1¢ 149¢ 447 717 13.2 404°  69.6° 11.8%
RMS5 5563 149¢  94.8¢ 154¢ 5734 1144 14.24 54.3¢ 1114 11.2¢
RM6x 4799 119¢  98.6° 96.6° 254 179 18.1 22.4 15.2 16.4
RUI 5560 125¢  87.5¢ 119¢ 431 602 11.6 40.2 57.5 10.0
Total 53923 118¢ - - 31.1° 28.9% - -

Invalid estimates excluded at the following rate: ¢ 0.2%, b 1-2%,

TABLE I

€ 2-4%, T 6-7%, €10%.

E. Standard filter method (O)

RESULTS FOR THE ALTERNATIVE METHODS. NOTE THAT ALTHOUGH THE
ABOCDO METHOD IS NOT CONSISTENTLY BETTER THAN ABCD, THE
TOTAL SHOWS AN MAE IMPROVEMENT NEAR 15%. THE LOWEST VALUE
FOR EACH METRIC IS MARKED IN BOLD, TAKING TABLE I INTO ACCOUNT.

Traj- Method: ABCDO Method: ABOCDO
ectory | Mean SD Median | Mean SD  Median
RCI 199 251 9.39 103 5.03 9.34
RC2 109  2.76 10.6 112 2.89 10.9
RD1 285 388 8.95 421 632 8.94
RL1 836 351 7.43 125 133 7.68
RM1 334 435 11.6 19.9 227 11.1
RM2 36.0 439 18.1 244 163 18.9
RM3 795 422 7.12 7.88  3.76 7.03
RM4 412 724 115 429 732 12.9
RM5 5384 1114 11.0¢ 288 470 10.9
RM6x | 222 151 16.1 26 247 13.2
RU1 401 579 9.86 414 613 10.8
Total 28.80 - - 24.6 - -

Invalid estimates excluded at the following rate: ° 1-2%, ¢ 6-7%.

assumption on the re-estimate, but the added value is not
apparent for this dataset. Instead, the local bundle optimization
(L) is given a chance to move estimates before the next step.

C. Smoothness optimization (C)

Step C does not use RANSAC. Using s for each frame,
the inlier votes from w are calculated and the TDOA outliers
discarded. The remaining TDOA and s are used in the smooth-
ness optimization proposed in [1] (Equation (14)). It penalizes
any rapid velocity changes over s and large measurement
errors on the TDOA inliers.

D. Linear motion optimization (D)

In step D, we actually assume a linearization of the motion
in a time window. The novel method makes the voting set
optimize for a locally linear motion, iteratively starting from
a zero-velocity assumption. The current time is naturally
included in the voting set and the residual at the minima
indicates the quality of the solution. With the current estimate
as a starting point, a new estimate is found for the source
location at the current time. Setting a larger (non-zero) selec-
tion window would allow taking the initial starting point from
adjacent times instead, but preliminary results indicate that it
is not needed. With a large voting set, a good linear fit should
be relatively independent of a single point.

Considering the estimated locations (denoted s) as a se-
quence of points, they can be smoothed with standard filter
methods without regard to the underlying TDOA measures.
The approach has potential worst-case pitfalls, but it is worth
evaluating as it should be fine for well-behaved data without
too many outliers. We denote the filter O, to signal the
difference from the A to D steps.

The outlier filter (O) is the Matlab function filloutliers with a
linear replacement strategy and the movmedian outlier detector
with a low ThresholdFactor. The effect is like a median filter,
giving a new estimate in frame k as the median of the set
{s(i) V kE —v < i < k+ v} for a voting window of size v.
The function operates on each dimension separately.

IV. EXPERIMENTS AND RESULTS

In Table I we show the results of the experimental val-
idation for the selected trajectories (see Section II-A) from
the LuViRA dataset. Each method is denoted as a string of
individual letters, corresponding to the pipeline steps used in
that order. For each method, we evaluate the result as the
absolute error (in cm) of the estimated 3D positions. The
metrics reported are mean (MAE) and median, as well as
the standard deviation (SD), of the absolute error distribution
for each trajectory. We also report the percentage of frames
that fail to give valid results, mostly a problem for method A
without any additional smoothing. The discussion will focus
on the mean, but it is worth noting that the median is often
far from the mean, indicating that a Gaussian distribution is
not a good fit and the larger SD suffer from outliers.

As expected, the Table I results of A improve significantly
with smoothing. The proposed ABCD method outperforms
even ABC, with an improvement of about 7% in total. The
median error is now mostly within 15 cm, but the improvement
in mean and SD is limited on the trajectories that ABC already
struggles with. When there are many outliers, i.e. few estimates
near the target, for a length of time, the smooth motion
assumption may instead lock on to the outliers.

Two alternative methods are shown in Table II, relying on
median smoothing (O) without consideration to the original
TDOA estimates. Adding this step at the end, method ABCDO
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TABLE III
RESULTS ON RM3 FOR DIFFERENT METHOD SEQUENCES. THE RESULTS
ARE BASED ON THE 3D DISTANCE (IN CM) FROM GT TO THE ESTIMATE.

Method Mean SD Median | <5 cm <15cm
A 73.3%  70.3% 49.92 1.8% 17.5%
AB 12.8 15.7 8.20 16.4% 81.3%
ABC 10.2 8.24 7.64 24.9% 81.6%
ABCD 8.06 4.37 7.12 22.6% 95.0%
AO 26.6 19.6 20.5 1.8% 33.0%
ABO 10.5 10.8 7.07 19.9% 85.4%
ABCO 10.2 8.24 7.57 25.2% 81.7%
ABCDO 7.95 4.22 7.12 22.9% 95.3%
AOB 24.1 19.7 16.8 4.3% 43.9%
ABOC 9.44 6.13 7.36 18.4% 85.6%
ABCOD 8.06 4.36 7.12 22.7% 95.0%
ABOCD 8.02 4.07 6.99 22.3% 93.2%
ABOCDO 7.88 3.76 7.03 23.0% 94.2%

Invalid estimates excluded at the following rate: “2%.

results are very similar to ABCD, showing as expected that
the estimates are smooth among themselves. The ABOCDO
method, on the other hand, provides yet another 15% improve-
ment on the total.

By adding the O step already after B, the smoothness of
the trajectory is enforced earlier, disrupting the misdirection
of the estimated TDOA. A successful example is the RC1
trajectory, where the MAE is halved and the SD considerably
reduced. Since the median remains largely unchanged, it is
evident that the improvement comes from outliers joining the
majority. In this case, the following steps (C and D) were
able to benefit from the better initial estimate and find the
appropriate context in the TDOA estimates. This pattern also
follows, to a lesser extent, for other trajectories with weak
results for ABCD. The RMS trajectory still shows a high SD,
but it should be noted that ABOCDO overcomes the 6-7%
invalid estimates discarded in the other methods. There are no
invalid estimates with this method. Table II also shows that
the ABOCDO method performs worse on certain trajectories.
In particular, RD1 and RL1 deteriorate in both MAE and SD.
Further analysis is needed to find a pipeline that can build on
the TDOA-agnostic smoothing without this problem.

Ablation experiments (see Table III) outline the effect of
O in different positions, for one of the trajectories. The first
group of rows confirms that each step improves MAE, as well
as SD, without O. The next group evaluates standard filtering,
and although O is promising, it cannot replace any of the other
steps, e.g. AB is still better than AO. The possibility of using
O as an intermediate step is evaluated in group three. AOB is
an improvement over AO, but not better than AB. ABCOD is
discarded for a similar reason. The exception is ABOC, which
improves on both ABC and ABCO. The last group shows that
the ABOCD is not better than the equivalent ABCDO, while
ABOCDO gives a very promising result on this trajectory. As
discussed above, Table II indicates that the same is not true
for all trajectories.

V. CONCLUSIONS

In this paper, we have presented several components using
motion assumptions for 3D localization from TDOA estimates.
We have investigated how these components can be combined

in different sequences to form robust systems and evaluated
how they perform on real data with ground truth estimates.
The experiments show that there are several methods that
improve over the benchmark. The idea of using RANSAC
on larger time windows and allowing TDOA to influence the
smoothing step seems to be fruitful. Future work to configure
the pipeline without reference to ground truth may need an
objective smoothness metric. We aim to extend these methods
for broader use in self-calibration and motion estimation.
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