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Abstract—This paper addresses the problem of multi-speaker
sound source localization (SSL). Previously, we developed a
neural network that integrates the von Mises Bernoulli (vM-
B) distribution into a Residual Network (ResNet) architecture,
enabling robust SSL by leveraging the periodicity of phase
information to mitigate environmental noise. Building on this, we
proposed a Video Vision Transformer (ViViT)-based method for
SSL, which not only demonstrated superior robustness in real-
world environments compared to vM-B ResNet but also achieved
higher localization accuracy. However, both methods were limited
to single-source localization. In this study, we extend these
approaches by modifying the ViViT architecture to accommodate
multi-source sound localization. Additionally, we incorporate
the von Mises Bernoulli distribution into the ViViT framework
to further enhance robustness against varying environmental
conditions. Experimental results confirm the effectiveness of the
proposed method.

Index Terms—sound source localization, multiple sources,
periodic phase information, Video Vision Transformer (ViViT)

I. INTRODUCTION

Sound source localization (SSL) is crucial for robot au-
dition [1] and computational auditory scene analysis [2].
Traditional SSL methods, such as multiple signal classification
(MUSIC) [3], often struggle in the presence of modeling
errors, including low signal-to-noise ratios (SNRs), reverbera-
tions and transfer function mismatches. To address these chal-
lenges, deep learning-based SSL methods have been actively
studied in recent years. Among these, Vision Transformers
(ViT) have shown excellent performance in various domains,
leading to the development of the Video Vision Transformer
(ViViT) [4], which extends ViT to handle spatiotemporal
patterns in video data. Motivated by the hypothesis that ViViT’
s ability to model temporal dependencies could benefit SSL
as well, we previously proposed a ViViT-based model for
single-speaker sound source localization [5]. However, our
model was limited to single-speaker audio input and did
not support multiple speakers. Moreover, neural networks
typically do not assume periodic distributions as inputs [6],
[7]. This characteristic has not been explicitly considered in
conventional approaches, resulting in phase information being
fed directly into models without adaptation. To address these
limitations, this study extends our ViViT-based model [5] in

two key ways. First, it incorporates the von Mises Bernoulli
(vM-B) distribution into the transformer embedding function
to better account for phase periodicity. Second, it introduces
multi-label classification to enable the localization of multiple
sound sources. Our key contributions are:

• Multi-source localization: Reformulating SSL as a multi-
label classification problem by applying binary cross-
entropy (BCE) loss, making the model more suitable for
real-world environments.

• Phase periodicity handling: Introducing the vM-B dis-
tribution into the ViViT embedding function to improve
robustness against environmental variations.

• Detailed performance evaluation: Ablation tests and com-
parisons with other methods were conducted under var-
ious acoustic conditions, including noise, reverberation,
and multiple sound sources, demonstrating the effective-
ness of the proposed method.

II. RELATED WORK

Current SSL methods face two major challenges: traditional
subspace techniques like MUSIC [3] degrade significantly
in low - SNR or reverberant conditions, and many deep
learning approaches overlook the periodic nature of phase
and/or temporal context of input signals [8], [8], [9], [9], [10].
Both aspects are vital for robust localization.

Deep learning methods for multiple-source localization,
especially those from the SELD (Sound Event Localization
and Detection) community, have made progress. SELDnet
uses a CRNN to perform frame-wise multi-label sound event
detection and concurrent DoA regression, tracking static and
moving sound events [8]. Variants utilizing squeeze - exci-
tation residual blocks or sequential CRNN ensembles have
further improved localization performance [11], [12]. Self-
attention [9] and ViT-based models [10] also capture temporal
dependencies but still lack explicit modeling of phase period-
icity and often assume fixed numbers of sources.

Phase periodicity, inherent in inter-channel phase cues
(0 = 360 degrees), is frequently overlooked as networks
usually process phase as linear values̶ introducing angular
discontinuity [13]. Notably, [6] and [7] represent the first
DNNs to explicitly incorporate this periodicity into their
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Fig. 1: The proposed SSL model architecture

architectures, demonstrating performance gains in SSL. The
von Mises ‒ Bernoulli (vM-B) distribution has been applied
in DNNs (vM-B-DNN [7], vM-B ResNet [14]) to explicitly
model this periodicity, improving SSL robustness. However,
these approaches usually span only short temporal contexts
and lack attention mechanisms, limiting their effectiveness in
real-world, dynamic, and multi-source scenarios.

Our previous work [5] applied ViViT, a time-series-
specialized ViT, to SSL, demonstrating its effectiveness in
real-world settings. However, it was limited to single-source
localization and could not handle multiple sources, a crucial
requirement for practical applications.

III. PROPOSED METHOD

Fig.1 illustrates the architecture of the proposed model.
Similar to the base model [5], it consists of six main blocks:

1) Preprocessing – Constructs a relative phase matrix from
the input.

2) Stride Division – Divides the input matrix into subma-
trices with as long a temporal context as possible while
keeping the number of submatrices unchanged.

3) vM-B Tubelet Embedding – Converts each submatrix
into tokens.

4) Short-Term Transformer Encoders – Processes tokens
with local features (short temporal context).

5) Long-Term Transformer Encoders – Processes tokens
with global features (long temporal context).

6) MLP (Multi-Layer Perceptron) – Estimates the sound
direction by integrating extracted features.

To enable multiple SSL and handle the periodicity of the input
phase, we improved the 3rd and 6th blocks, respectively. These
modified components are highlighted with red rectangles in
Fig. 1 and are described in the following sections.

A. MLP (Multi-Layer Perceptron)

To extend the base model for multiple sound source scenar-
ios, the classification task must be converted from multi-class
classification to multi-label classification. To achieve this, the
categorical cross-entropy (CCE) loss function is replaced with
the sum of BCE losses for all output elements, following the
approach in [15]. Additionally, to apply BCE loss, a sigmoid
activation function is introduced at the final layer of the MLP
in the 6th block. This ensures that all output elements fall
within the range [0, 1], making BCE loss computation feasible.

The BCE loss with logits is defined as follows:

LBCE(y, z) =
1

N

N∑
i=1

[−yi log(σ(zi))− (1− yi) log(1− σ(zi))] , (1)

σ(zi) =
1

1 + e−zi
, (2)

where zi denotes the model’s logit output for the i-th element,
yi ∈ 0, 1 is the corresponding binary ground truth label, and
σ(·) is the sigmoid function.

B. vM-B Tubelet Embedding

The vM-B Tubelet Embedding in the 3rd block addresses
the periodicity of phase information. Tubelet Embedding,
originally proposed in ViViT [4], extracts non-overlapping
tensors from a 3D input, applies a linear transformation, and
constructs tokens.

In the base model, tokenization was performed while pre-
serving the correlation between microphones by avoiding
division along the microphone axis during tensor extraction.
The vM-B Tubelet Embedding extends this by incorporating
the vM-B function into the linear transformation process. This
enables phase-aware conversion of non-overlapping tensors
xij(j = 1, 2, . . . , nk · nf ) extracted from the input Ṽi into
tokens zij .

The token vector zij is computed as follows:

Xij = Flatten(xij), (3)
zij = A cos(Xij) +B sin(Xij), (4)

where Flatten() is a function that converts a three-
dimensional tensor xij ∈ Rf×(M−1)×k into a vector Xij ∈
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R(f×(M−1)×k), and A,B ∈ Rd×(f×(M−1)×k) are weight
matrices randomly initialized during training.

IV. EVALUATION

For evaluation, we created four datasets and conducted three
experiments using three different metrics.

A. Dataset

A 5 × 8 × 3m room (RT60 = 0.2 s) was used. An 8-
ch TAMAGO microphone array was placed at the center,
and a speaker was positioned 1m away. Speech from the
Centre for Speech Technology Research VKTS (CSTR-VKTS)
corpus [16] was recorded in 72 directions at 5-degree intervals.
Diffuse noise (BUS, CAF, PED, STR from CHiME4 [17]) was
played from four corners. Recordings were in 16-bit, 16 kHz
(see details in [5]).

We calculated RMS every second, removed segments with
RMS 5% of the max, and chunked the rest into 30 - second
segments as the recorded sound set.

• Dataset1: one speech chunk + one noise type at SNR =
−10, −5, 0, 20 dB.

• Dataset2: mix of two speech chunks ( ≥ 10-degree apart,
different content) + one noise type at the same SNR
levels.

• Dataset3 and Dataset4: same as Dataset1/2 but recorded
in a more reverberant room (RT60 = 0.6) for testing in
reverberant conditions.

For both Dataset1 and Dataset2, the SNR = -5 dB data was
reserved exclusively for testing. The remaining data was split
8:1:1 into training, validation, and test sets.

B. Metrics

Three metrics were used. Mean Absolute Error (MAE)
represents the average absolute error between the estimated
and ground truth directions. Accuracy (Acc) was defined as
the ratio of correct results to the total number of test samples,
while Accuracy±5 (Acc±5) was defined as the proportion of
results with an absolute error of 5 degrees or less relative to
the total number of test samples.

Since SELDNet is based on a regression model, different
definitions were applied to Acc and Acc±5. Specifically, Acc
was calculated as the ratio of results with an absolute error of
2.5 degrees or less, while Acc±5 was calculated as the ratio
of results with an absolute error of 7.5 degrees or less.

C. Experiments

To evaluate the performance of the proposed model, we
conducted the following three experiments at four different
SNR levels (-10, -5, 0, and 20 dB):

• Experiment 1: Effectiveness of each proposed technique
(ablation test)

• Experiment 2: Performance comparison with other meth-
ods

• Experiment 3: Robustness to reverberation
Experiment 1 examined the effectiveness of each enhance-

ment technique we applied to the original ViViT. Specifically,

we conducted an ablation test on vM-B tubelet embedding
and BCE loss, proposed in this paper, as well as stride
division, introduced in [5]. For training and evaluation, we
used a single-speaker dataset (Dataset1). Since BCE loss was
introduced for SSL of multiple sound sources, in addition
to the model trained on Dataset1, we also used a model
trained on Dataset2, which contains a mix of single-source and
two-source data. We then conducted comparative experiments,
using Acc as the evaluation metric, to assess the impact of
BCE loss versus the CCE loss for both single-source and two-
source test data.

Experiment 2 compared the proposed method with MU-
SIC, vM-B ResNet, and SELDNet. MUSIC [3] is a signal
processing-based localization method known for its robustness
to noise. vM-B ResNet [14] is a ResNet-based localization
method that incorporates phase information. SELDNet [8] is
designed for simultaneous SSL and event detection. Since vM-
B ResNet is originally designed for single-source localization,
it was evaluated only in single-source scenarios. Although
SELDNet is capable of handling multiple sources, it assumes
that at most one source of the same type is present. As
this study focuses solely on speech as the source type for
evaluation, SELDNet was used only in the single-source
localization scenario. The evaluation was conducted under two
scenarios: one in which only a single source was present and
another where both single and two-source cases were mixed.
In the single-source scenario, the model was trained and
evaluated using Dataset1, while in the mixed-source scenario,
evaluation was performed using Dataset2. In all evaluations,
it was assumed that the system knew the number of sources
in advance. When only one source was present, the direction
corresponding to the highest output value was considered the
sound source direction. When two sources were present, the
method of determining the source directions depended on the
loss function. For BCE loss, the top two directions with the
highest output values were selected as the source directions,
while for CCE loss, the directions corresponding to the two
highest peaks in the output vector were selected.

Experiment 3 assessed the robustness of the proposed
method in reverberant environments by comparing it with
MUSIC under two conditions: single-source only and mixed
single+two-source cases were mixed. For the single-source
scenario, we used a model trained on Dataset1, which has
an RT60 of 0.2 s, and evaluated its performance on both the
test data from Dataset1 and Dataset3, which has a longer
reverberation time of RT60 = 0.6 s. In the mixed-source
scenario, we used a model trained on Dataset2 and compared
its performance on both the test data from Dataset2 and
Dataset4.

The proposed model was trained using the same pre-
processing and parameters as in [5], while the comparison
models were trained following the preprocessing methods and
parameters specified in their respective papers. MUSIC was
implemented using the open-source software HARK [18], with
all parameters set to HARK’s recommended default values.
Training was conducted for a maximum of 50 epochs, with
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TABLE I: Effectiveness of each proposed technique (training:dataset1/test:dataset1)

vM-B Stride Binary -10 -5 0 20
Tubelet Division CE MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑

✓ 19.68 67.88 77.76 14.04 78.63 84.49 9.763 85.44 89.21 1.811 96.59 97.63
✓ ✓ 9.275 76.79 89.04 3.7 89.28 95.79 1.44 95.41 98.49 0.131 99.79 99.87

✓ ✓ ✓ 5.173 87.5 94.05 1.826 95.42 97.94 0.778 98.33 99.12 0.08 99.89 99.93

TABLE II: BCE loss vs. CCE loss (Acc)

Training Data Test Dataset #Sources BCE CCE
-10 -5 0 20 -10 -5 0 20

dataset1 dataset1 1 87.50 95.42 98.33 99.89 87.75 95.43 98.29 99.94

dataset2
dataset2 1 & 2 88.64 95.54 98.01 99.36 89.43 95.80 97.93 99.38
part of dataset2 1 86.51 96.60 97.29 99.36 71.37 80.91 85.33 95.06
part of dataset2 2 88.7 95.51 98.03 99.36 89.95 96.23 98.30 99.50

TABLE III: Performance Comparison

Method #Sources -10 -5 0 20
MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑

Proposed 1 5.17 87.50 94.05 1.83 95.42 97.94 0.78 98.33 99.12 0.08 99.89 99.93
vM-B ResNet 1 38.13 35.39 55.30 29.07 46.48 66.60 22.59 54.21 74.34 11.08 77.60 87.79
SELDNet 1 3.14 67.75 95.98 1.49 83.25 99.61 1.41 86.64 99.41 1.15 93.24 99.52
MUSIC 1 68.41 15.08 32.63 48.31 27.16 53.64 28.38 29.31 74.11 3.41 58.84 98.80

Proposed 1 & 2 4.71 88.69 94.45 1.74 95.51 98.03 0.89 98.03 99.05 0.38 99.37 99.60
MUSIC 1 & 2 63.78 11.45 26.07 49.61 19.22 41.13 36.31 27.80 56.68 16.59 41.63 81.85

TABLE IV: Single Source Localization for different reverberation conditions (RT60=0.2s and RT60=0.6s)

RT60 Method -10 -5 0 20
MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑

0.2s
Proposed 5.17 87.50 94.05 1.83 95.42 97.94 0.78 98.33 99.12 0.08 99.89 99.93
MUSIC 68.41 15.08 32.63 48.31 27.16 53.64 28.38 39.21 74.11 3.409 58.84 98.80

0.6s
Proposed 2.71 83.90 96.93 0.99 89.94 99.29 0.50 92.15 99.85 0.29 94.41 99.99
MUSIC 69.21 14.21 32.19 48.49 27.11 53.82 26.95 41.65 75.55 1.82 66.69 99.86

TABLE V: Multiple Source Localization for different reverberation conditions (RT60=0.2s and RT60=0.6s)

RT60 Method -10 -5 0 20
MAE↓ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑ MAE↓↑ Acc↑ Acc±5↑ MAE↓ Acc↑ Acc±5↑

0.2s
Proposed 4.71 88.69 94.45 1.74 95.51 98.03 0.89 98.03 99.05 0.38 99.37 99.60
MUSIC 63.78 11.45 26.07 49.61 19.22 41.13 36.31 27.80 56.68 16.59 41.63 81.85

0.6s
Proposed 5.38 79.95 94.35 2.62 86.45 97.66 2.01 89.06 98.44 1.42 91.53 99.01
MUSIC 63.42 11.27 31.16 49.4 18.9 47.58 37.41 25.92 61.95 23.34 40.09 81.25

early stopping applied if the validation loss did not decrease
for 5 consecutive epochs.

D. Results and discussion

Tables I and II summarize the findings from Experiment 1.
Table I highlights the impact of each enhancement to ViViT
under the single-source scenario, while Table II contrasts BCE
and CCE losses using models trained on Dataset1 for single-
source evaluation and on Dataset2 for both single- and two-
source settings.

From Table I, it is clear that combining stride division
with BCE loss leads to improved results, and the addition
of vM-B tubelet embedding further enhances all performance
metrics (MAE, ACC, and Acc±5), resulting in the strongest

overall performance. These outcomes indicate that earlier
methods were unable to fully exploit the periodicity inherent
in phase inputs, whereas the vM-B tubelet embedding enables
a more effective use of this periodicity, significantly improving
localization accuracy.

Table II shows the evaluation of BCE loss in multi-source
scenarios. When trained on Dataset1 and tested on single-
source data, all methods performed similarly; although de-
signed for multiple sources, BCE achieved comparable perfor-
mance to CCE. In contrast, CCE appears better on Dataset2,
which mainly consists of two-source data and thus favors
models specialized for that case. Splitting the Dataset2 test set
reveals this trend: BCE outperforms on single-source data due
to CCE’s fixed two-source assumption, which leads to source
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count errors. On two-source data, CCE performs slightly better
since its fixed assumption aligns with the data. In summary,
CCE performs well when the number of sources matches
between training and testing, but lacks flexibility. BCE, for-
mulated as a multi-label classification task, generalizes better
across source counts. Given this, CCE loss achieves high
performance when the number of sources in the training and
evaluation data matches but fails to maintain good performance
when they do not. On the other hand, BCE loss, formulated
as a multi-label classification problem, enables the model to
generalize even when the number of sources in the training
and evaluation datasets differs.

Table III shows the results of Experiment 2. First, when
evaluating the model trained on Dataset1 with single-source
data, the proposed method and SELDNet demonstrated good
performance. Comparing these two methods, the proposed
method achieved the highest accuracy (Acc), while SELDNet
performed slightly better in the other two metrics. This differ-
ence can be attributed to the fundamental approach of treating
SSL as either a classification or a regression task. Since the
proposed method formulates localization as a classification
problem, it excels at accurately estimating the sound source
direction, leading to superior Acc performance. On the other
hand, SELDNet formulates localization as a regression prob-
lem, which introduces some estimation errors but prevents the
predicted results from deviating significantly from the correct
direction. As a result, it achieves better performance in MAE
and Acc±5. Therefore, improving MAE and Acc±5 can be
achieved by making the classification problem more similar
to a regression problem, specifically by increasing the angular
resolution of the proposed method. When evaluating the model
trained on Dataset2, the proposed method outperformed the
MUSIC method in all metrics. In particular, when the SNR is
below 0, MUSIC suffers from theoretical limitations, leading
to a significant performance drop. However, the proposed
method maintains good performance even in scenarios where
single-source and two-source cases are mixed.

Tables IV and V show the result of Experiment 3. Ta-
ble IV presents the results for the single-source scenario,
while Table V shows the results for the mixed single- and
two-source scenario. Across all SNR conditions, the proposed
method consistently outperforms MUSIC. In general, MUSIC
is known to be vulnerable to reverberation as it does not handle
multipath effects well. In this experiment, however, MUSIC
demonstrated stable results despite changes in reverberation,
regardless of the number of sound sources. Nevertheless, its
absolute performance remains low under SNR conditions of
0 dB or lower due to its theoretical limitations. On the other
hand, the proposed method maintains high performance under
both noise and reverberation. It achieves an Acc of over 90%,
and in almost all cases, MAE remains below 5 degrees, which
is the angular resolution, demonstrating its high accuracy.

From the results of these experiments, it was demonstrated
that the proposed method outperforms conventional methods
in terms of both performance and robustness under noise and
reverberation, even in the presence of multiple sound sources.

V. CONCLUSION

This paper presented improvements to deep learning-based
SSL and extensions to support multiple sound sources for
real-world applications such as robot audition. Specifically,
we extended the ViViT-based model and introduced binary
cross entropy loss to reformulate the problem from multi-class
classification to multi-label classification, enabling localization
of multiple sound sources. Additionally, we incorporated von
Mises-Bernoulli (vM-B) tubelet embedding to account for
phase periodicity. Experimental results demonstrated that the
proposed method achieves high accuracy and robustness under
various acoustic conditions, including low SNR, reverberant.
and multi-source scenarios, validating its effectiveness. Future
work includes extending the model for online inference using
streaming audio, and integrating the localization model into
realtime robot audition systems.
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