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r Abstract—Relative Harmonic Coefficients (RHCs) are a
promising audio descriptor for Direction of Arrival (DOA)
estimation but are vulnerable to noise and reverberation. We
introduce RHC-ED, a convolutional encoder-decoder architec-
ture that processes noisy and reverberant RHCs, restoring
their ideal properties by suppressing unwanted artifacts. Using
stacked CNNs, RHC-ED compresses and reconstructs RHCs
for improved DOA estimation. Experiments across diverse
acoustic conditions confirm RHC-ED’s effectiveness in reducing
estimation errors and outperforming recent state-of-the-art
methods for source localization, especially using first-order
spherical harmonics.

Index Terms—Direction of Arrival, Relative Harmonic Coef-
ficients, Convolutional Encoder-Decoder, Denoising, Dereverber-
ation.

I. INTRODUCTION

Audio processing is integral to many modern technolo-
gies, enabling devices to analyze, synthesize, and enhance
complex audio features [1]–[5]. Understanding the Direction
of Arrival (DOA) of sound sources is crucial for improving
user experiences in applications like teleconferencing, smart
speakers, surveillance, and spatial audio rendering [6], [7].

DOA estimation is a well-established but challenging
research problem. Traditional techniques can be broadly
categorized into three main approaches [1]: Steered Response
Power (SRP)-based, subspace methods, and Time Difference
of Arrival (TDOA)-based methods. SRP involves steering a
beamformer towards candidate DOAs to maximize output
power, but its precision deteriorates in noisy and reverberant
environments due to multiple local maxima [8]. Subspace
methods, such as MUSIC [9] and ESPRIT [10], analyze
the signal covariance matrix and perform well in multi-
source scenarios under specific a priori conditions. However,
these methods are ineffective at low Signal-to-Noise Ratios
(SNRs) [11]. Lastly, TDOA-based methods rely on signal
cross-correlation matrices but also suffer precision loss in
diffuse sound fields [8].

Spherical Microphone Arrays (SMAs) and Spherical Har-
monics Coefficients (SHCs) have improved sound field
descriptions [12]–[14], solving frequency correlation issues
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Fig. 1: Spherical coordinates system, defined by three
components: azimuth ϕ, inclination θ and radius r.

in DOA estimation [15]. Hu et al. [16] introduced Relative
Harmonic Coefficients (RHCs), which depend only on DOA,
offering spatial uniqueness. However, noise and reverberation
reduce their effectiveness.

RHCs have been applied in both model-based methods
[17], [18] and deep learning approaches [19]. Dwivedi et al.
proposed a hybrid Convolutional Recurrent Neural Network
(CRNN) combining CNNs for pattern capture and RNNs for
temporal context. Using RHCs, they treated DOA estimation
as a classification task, which limits the precision of the
estimations.

In this work, we present RHC-ED (Relative Harmonics -
Convolutional Encoder Decoder), which leverages stacked
CNNs to compress and expand STFT (Short Time Fourier
Transform) coefficients limited to the 1st order. This process
aims to remove noise and reverberation from non-ideal RHCs.
We demonstrate that RHC-ED effectively maps noisy and
reverberant RHCs to their ideal counterparts. For training and
testing, we created a synthetic dataset of RHCs derived from
diverse acoustic environments to ensure generalization. Our
results show that RHC-ED significantly enhances RHC-based
localization and achieves lower localization errors compared
to classification-based DOA methods.

II. PROBLEM DEFINITION

Let us represent a point x in spherical coordinates,
characterized by a radial distance r, an azimuthal angle
ϕ ∈ [0, 2π), and an inclination angle θ ∈ [0, π] as depicted
in Figure 1.
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In the Spherical Harmonic (SH) representation [20], the
sound field at an arbitrary point x = (r, θ, ϕ) can be expressed
as a weighted sum of SH orthogonal basis functions

Ynm(θ, ϕ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos θ)eimϕ, (1)

where, n and m denote the order and degree of the SH
function. The term Pm

n (·) is the real-valued associated
Legendre function.

Let us consider a SMA with Q capsules, each positioned
at a radial distance r from the origin. The sound pressure
at the qth microphone, located at xq = (r, θq, ϕq) for q ∈
{1, . . . , Q}, is

p(xq, k) =

N∑
n=0

n∑
m=−n

αnm(k)bn(kr)Ynm(θq, ϕq), (2)

where k = 2πf
c is the wave number, c is the speed of sound,

and f is the frequency. The truncation order N is determined
by N = ⌈kr⌉, where ⌈·⌉ denotes the ceiling function.

Moreover, the function bn(kr) is defined as

bn(kr) =

{
jn(kr), for an open array,

jn(kr)− j′n(kr)

h′
n(kr)

h
′

n(kr), for a rigid array.
(3)

where, j′n(·) and h
′

n(·) are the partial derivatives of the
spherical Bessel and Hankel functions, respectively.

According to [21], the SHCs αnm(k) can be obtained by
inverting (2), leading to

αnm(k) =
1

bn(kr)

Q∑
q=1

p(r, θq, ϕq)Y
∗
nm(θq, ϕq)wq. (4)

Here, wq represents a microphone weight that ensures
consistency in the equation.

Assuming that a sound source satisfies the far-field condi-
tion [22], the sound field can be approximated as a planar
wave. In this case, the SHCs [23] simplify into

αnm(k) = S(k)4πinY ∗
nm(θs, ϕs), (5)

where S(k) is the source signal and θs, ϕs are the azimuth
and inclination of the source with respect to the center of
the SMA. In [16], authors introduce the RHC defined as the
ratio between αnm and α00

βnm(k) =
αnm(k)

α00(k)
. (6)

Substituting the SHC expression from (5) into (6) we obtain

βnm(k) = 2
√
πinY ∗

nm(θs, ϕs). (7)

This formulation underscores the key theoretical properties of
RHCs, including their independence from the driving signal
S(k), frequency, and spatial characteristics. Additionally, it
highlights their exclusive dependence on the source DOA
(θs, ϕs), making RHCs particularly valuable for localization
algorithms.

A. Source DOA estimator

Considering the characteristics of RHCs, various methods
have been proposed for DOA estimation, as discussed in [24],
[25]. However, leveraging the inherent properties of RHCs,
it has been demonstrated in [25] that, in ideal conditions
(anechoic and noiseless), by truncating the expansion to the
first order, the DOA can be directly estimated from the unitary
vector

η(k) =


√

1/6ℑ(β1,−1(k)− β1,1(k))

−
√

1/6ℜ(β1,−1(k) + β1,1(k))√
1/3ℑ(β1,0(k))

 =

sin(ϕ) sin(θ)cos(ϕ) sin(θ)
cos(θ)

 ,

(8)
where ℜ(·) and ℑ(·) denote the real and the imaginary parts

of a number, respectively. However, in real-world scenarios,
the reverberant component must also be considered and
analyzed.

B. Signal model in diffuse environment

Let us consider a noiseless diffuse field scenario in which
there is a point source located at xs = (rs, θs, ϕs). In this
case, the sound field and the corresponding SHCs consist of
both direct and reverberant contributions. The SHCs in xs

corresponding to the direct-path echo are

αdir
nm(k) = S(k)ikhn(krs)Y

∗
nm(θs, ϕs), (9)

leading to the corresponding RHCs

βdir
nm(k) =

2
√
πhn(krs)Y

∗
nm(θs, ϕs)

h0(kr)
. (10)

If we include the reverberant component [26], the SHCs
become

αrev
nm(k) = αdir

nm(k)+

Ñ∑
v=0

v∑
u=−v

α̂vu
nm(k)S(k)ikjv(krs)Y

∗
vu(θs, ϕs),

(11)
where α̂vu

nm corresponds to the SHC of order and degree vu
generated by the incident reflection outgoing field of order
and degree nm [27], and Ñ is its truncation order.

By substituting (11) into (6), the RHCs for the reverberant
field become

βrev
nm(k) =

hn(krs)Y
∗
nm(θs, ϕs) +

N∑
v=0

v∑
u=−v

α̂vu
nm(k)jv(krs)Y

∗
vu(θs, ϕs)

h0(krs)Y ∗
00(θs, ϕs) +

N∑
v=0

v∑
u=−v

α̂vu
00 (k)jv(krs)Y

∗
vu(θs, ϕs)

.
(12)

Equation (12) reveals that in a reverberant field, RHCs are
no longer solely dependent on the source DOA. Specifically,
as shown in [27], α̂vu

nm is influenced by the Relative Transfer
Function (RTF) between the source and receiver regions.
This dependency causes the RHCs to deviate from their
ideal behavior. This observation underscores the need for
a system capable of mapping nonideal RHCs to their ideal
anechoic counterparts.
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Fig. 2: RH-CED description, including kernels dimensions.
The encoding and decoding architectures are mirrored, except
that the latter uses transposed convolutions instead of standard
convolutions to upsample the compressed features. Br

represents the anechoic reconstruction tensor in similarity to
B in Sec.III.

III. PROPOSED MODEL

Let us define β(k) = [β00(k), . . . , βnm(k)]T and B =
[β(k1), . . . ,β(kℓ), . . . ,β(kL)] where ℓ is the frequency bin
index and L is the number of frequency bins. We can
formulate the mapping problem as

∃ fΩ : Br = fΩ (B̃),

Ω = argmin
Ω

F(B̂, fΩ(B̃)),
(13)

where fΩ is a parameterized function that maps the noisy and
reverberant coefficients B̃ to their anechoic counterparts B̂,
as the same Br represents the reconstructed RHCs, and Ω
represents the set of parameters that define this mapping. The
function F(B̂, ·) denotes the mean square error loss function
used to optimize Ω.

Thus, we developed the Relative Harmonic Coefficients
Encoder Decoder (RHC-ED) to optimize Ω as depicted in
Figure 2. Indeed, after a training phase, applying fΩ to the
measured RHCs β̃(k), we aim for the RHC-ED to produce
anechoic reconstructions, denoted as βr(k) in

βr(k) = fΩ (β̃(k)). (14)

As input we use 10 consecutive time frames of the
multichannel STFT with 256 frequency bins of the RHCs up
to the 1st order expansion without the channel 0, which is 1
by definition.

A. RHC-ED description

The input features consist of time-frequency representations
of RHC limited to order N = 1, excluding β00. Each
selected coefficient is decomposed into its real and imaginary
components. The input features are structured into a tensor

B =


ℜ(β1,−1)
ℑ(β1,−1)
ℜ(β1,0)
ℑ(β1,0)
ℜ(β1,1)
ℑ(β1,1)


...
... ∈ R6×128×10 (15)

Given that the representation spans 256 frequency bins, the
final input tensor has dimensions 6× 256× 10.

The first processing stage is data compression, which
takes place in the encoder. Here, the input tensor is passed
through a sequence of five consecutive convolutional layers,
progressively reducing its dimensionality while preserving
essential features (see Fig. 2). The decoding process mirrors
the encoding structure, employing transposed convolutions
instead of standard convolutions. These upsampling operations
restore the compressed latent representation to its original
dimensions, aiming at reconstructing the anechoic coefficients.
The detailed architecture of the RHC-ED, as well as the
number of learnable parameters, is depicted in Figure 2.

B. Dataset

We generate the dataset by applying spherical decom-
position to the convolution of speech signal sources and
Room Impulse Responses (RIRs) simulating various acoustic
environments. Source signals are randomly selected from a
Librispeech [28] subset for Task 1 [29] of the L3DAS23
dataset, sampled at 16 kHz with up to 12 s of clean speech,
including 53% male and 47% female voices.

RIRs are synthesized using the SMIR generator [30],
simulating interactions between randomly placed sources
and a Spherical Microphone Array (SMA), configured as
an Eigenmike with 32 microphones. The SMA is positioned
at the center of the xy-plane at a height of 1.3m. Sources
are placed taking random inclinations θs from 60◦ to 130◦,
azimuths ϕs from 0◦ to 360◦, and distances rs from 1.5m to
3.5m from the SMA’s center, generating 500 spatial samples
per room. Table I summarizes the parameter ranges for

Azimuth (ϕs) [0◦, 360◦]
Inclination (θs) [60◦, 130◦]

Distance from microphone (rs) [1.5, 3.5]m
Room size (w, h, d) [4, 8]m× [5, 10]m× [3, 5]m

T60 [0.25, 1.0]s
SNR [5, 60]dB

TABLE I: Summary of Parameters used for dataset generation.

the synthetic dataset. Given the SHCs of each sample, we
computed RHCs using (6), then applied the STFT with a 512-
sample Hamming window and a 320-sample hop size, yielding
427 time frames. Input data was created using a sliding
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window of 10 frames, resulting in audio representations of
size 6× 256× 418, discarding the last samples as they fall
short of 10 frames. For training the RHC-ED model, we
selected four rooms with randomly assigned reverberation
times T60 in the pool [0.25 ,0.50 ,0.75 ,1.00 ]s. Each room
contained 517 recordings, resulting in a total training dataset
of 2,068 samples. To facilitate model evaluation, 20% of the
training dataset was set aside as validation set. The test set
is constructed by randomly selecting 50 audio samples for
each of the 10 different T60 and SNR values, as detailed in
the following section.

IV. VALIDATION

To evaluate the performance of RHC-ED, we propose
two distinct experiments: one utilizing the synthetic test
set and another based on real measurements from [31].
Moreover, a voice activity detector [32] was implemented
to discard the time frames in which the source is not active.
Thus, we compare the DOA estimates obtained using (8)
under three different conditions: RHCs processed using
the proposed model, unprocessed RHCs, and a data-driven
approach proposed in [19].

A. Metrics
To estimate the accuracy, we define the Angular Error (AE)

AE(η) = | arccos
( L∑

ℓ=1

ηT (kℓ)

L
ηGT

)
|◦, (16)

where ηGT is the ground truth DOA derived directly from
geometric data. Since RHC-ED provides us with an estimate
of DOA for each time frame τ , we obtain a set of T = 418
estimates of AE for each audio sample. Therefore, we also
measure the standard deviation

σ =

√√√√ 1

T

T∑
τ=1

(AE(η(τ))− ÂE)2, (17)

where ÂE =
∑T

τ=1 AE(η(τ))/T .

B. Performance Analysis on Synthetic Dataset
This evaluation was carried out using 50 samples

(i.e. a total of 20800 estimates) from the synthetic
dataset described in Section III-B. Specifically, we se-
lected 10 different rooms with reverberation times T60=
[0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1]s that were not
part of the training set. The results of the evaluation of
the synthetic dataset for different T60 values are presented
in Fig. 3. The findings indicate that RHC-ED is consistently
more accurate that the other methods. Notably, the method in
[19] demonstrates reduced accuracy in our tested scenario,
primarily due to two key factors: the expansion order, which is
constrained to the first order in this study, whereas prior work
extends it up to the fourth order, and the inherent limitations
of the method itself. More specifically, this approach is
classification-based, relying on discrete class intervals spaced
every 5◦. Thus, any misclassification results in a minimum
error of 5◦.
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Fig. 3: AE distribution derived from 50 audio samples from
the test set for each T60 with SNR in the whole considered
range. Solid lines indicate the mean value of ÂE across all
50 samples, while the shaded regions represent the standard
deviation σ of AE.
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Fig. 4: Probability density function of the AE distribution
obtained from the [31] dataset. Bars indicates the probability
of AE for each 2[deg] sector, dashed lines indicate the 90%
confindence interval of AE values.

C. Performance Analysis on Real-World Measurements

Figure 4 illustrates the histogram of AE obtained from
the experiment using the dataset [31]. The dispersion is
assessed by analyzing the AE of each time frame across
the three methods. It is evident that RHC-ED exhibits a
higher probability of maintaining lower errors. Specifically,
the 90% confidence interval highlights the effectiveness of
RHC-ED processing, with an AE confidence interval of 7◦,
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compared to 14◦ for measured RHCs and 31◦ for the method
in [19].

V. CONCLUSION

We implemented a deep learning-based denoising and
dereverberating system to mitigate the effects of non-idealities
on RHCs, theoretically depending only on source DOA. In this
work, we proposed an encoder-decoder capable of mapping
RHCs resulting from noisy and reverberated sound fields to
their ideal counterparts. We demonstrated that localization
using RHC-ED processed features outperformed a recent
state-of-the-art technique for DOA classification, assuming
same input conditions (1st order SH expansion).

REFERENCES

[1] M. Cobos, F. Antonacci, A. Alexandridis, A. Mouchtaris, and B. Lee,
“A survey of sound source localization methods in wireless acoustic
sensor networks,” Wireless Communications and Mobile Computing,
vol. 2017, no. 1, p. 3956282, 2017.

[2] W. Shi, J. Huang, and Y. Hou, “Fast doa estimation algorithm for
mimo sonar based on ant colony optimization,” Journal of Systems
Engineering and Electronics, vol. 23, no. 2, pp. 173–178, 2012.

[3] Y. Wu, C. Li, Y. T. Hou, and W. Lou, “Real-time doa estimation for
automotive radar,” in 2021 18th European Radar Conference (EuRAD),
2022, pp. 437–440.

[4] D. Albertini, G. Greco, A. Bernardini, and A. Sarti, “Diffusion-based
sound source localization using networks of planar microphone arrays,”
in ICASSP 2023 - 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[5] M. Olivieri, A. Bastine, M. Pezzoli, F. Antonacci, T. Abhayapala, and
A. Sarti, “Acoustic imaging with circular microphone array: A new
approach for sound field analysis,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 32, pp. 1750–1761, 2024.

[6] A. Alexandridis, D. Pavlidi, N. Stefanakis, and A. Mouchtaris,
Parametric Spatial Audio Techniques in Teleconferencing and Remote
Presence. John Wiley Sons, Ltd, 2017, ch. 15, pp. 363–386.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
9781119252634.ch15

[7] M. Sekikawa and N. Hamada, “Doa estimation of multiple sources
using arbitrary microphone array configuration in the presence of
spatial aliasing,” in 2014 International Symposium on Intelligent Signal
Processing and Communication Systems (ISPACS), 2014, pp. 080–083.

[8] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Robust
localization in reverberant rooms,” pp. 157–180, 2001. [Online].
Available: https://doi.org/10.1007/978-3-662-04619-7 8

[9] P. Stoica and A. Nehorai, “Music, maximum likelihood, and cramer-
rao bound,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 37, no. 5, pp. 720–741, 1989.

[10] R. Roy and T. Kailath, “Esprit-estimation of signal parameters via
rotational invariance techniques,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 37, no. 7, pp. 984–995, 1989.

[11] J. Thomas, L. Scharf, and D. Tufts, “The probability of a subspace
swap in the svd,” IEEE Transactions on Signal Processing, vol. 43,
no. 3, pp. 730–736, 1995.

[12] M. Pezzoli, J. Carabias-Orti, P. Vera-Candeas, F. Antonacci, and
A. Sarti, “Spherical-harmonics-based sound field decomposition and
multichannel nmf for sound source separation,” Applied Acoustics, vol.
218, p. 109888, 2024.

[13] M. Cobos, M. Pezzoli, F. Antonacci, and A. Sarti, “Acoustic source
localization in the spherical harmonics domain exploiting low-rank ap-
proximations,” in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[14] M. Pezzoli, M. Cobos, F. Antonacci, and A. Sarti, “Sparsity-based
sound field separation in the spherical harmonics domain,” in ICASSP
2022 - 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2022, pp. 1051–1055.

[15] D. Khaykin and B. Rafaely, “Coherent signals direction-of-arrival
estimation using a spherical microphone array: Frequency smoothing
approach,” 2009 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, pp. 221–224, 2009.

[16] Y. Hu, P. N. Samarasinghe, and T. D. Abhayapala, “Sound source
localization using relative harmonic coefficients in modal domain,”
2019 IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA), pp. 348–352, 2019.

[17] D. Khaykin and B. Rafaely, “Coherent signals direction-of-arrival
estimation using a spherical microphone array: Frequency smoothing
approach,” 2009 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, pp. 221–224, 2009.

[18] Y. Hu, T. D. Abhayapala, and P. N. Samarasinghe, “Multiple source
direction of arrival estimations using relative sound pressure based
music,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 253–264, 2021.

[19] P. Dwivedi, S. B. Hazare, G. Routray, and R. M. Hegde, “Long-
term temporal audio source localization using sh-crnn,” 2023 National
Conference on Communications (NCC), pp. 1–6, 2023.

[20] E. G. Williams and J. A. Mann, “Fourier acoustics: Sound radiation
and nearfield acoustical holography,” 1999. [Online]. Available:
https://api.semanticscholar.org/CorpusID:121699111

[21] T. D. Abhayapala and D. B. Ward, “Theory and design of high order
sound field microphones using spherical microphone array,” 2002 IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 2, pp. II–1949–II–1952, 2002.
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