
Learning order matters in class-incremental learning
for sound localization and detection
Ruchi Pandey, Manjunath Mulimani, Archontis Politis, and Annamaria Mesaros

Signal Processing Research Centre, Tampere University, Finland
{ruchi.pandey, manjunath.mulimani, archontis.politis, annamaria.mesaros}@tuni.fi

Abstract—This study investigates the impact of class learning
order in Class-Incremental Learning (CIL) for Sound Event
Localization and Detection (SELD) by systematically evaluating
class-wise localization error (LE) and F1-score across different
class-ordering scenarios. A continual learning model is trained in
two stages: initially on nine classes, then incrementally extended
with four additional classes that vary in acoustic complex-
ity. The results show that strategically introducing acoustically
challenging (difficult to recognize) classes in the incremental
learning stage enhances overall SELD performance, leading to
increased F1-scores and reduced LE compared to a baseline that
learns all the classes simultaneously. Furthermore, this study
compares performance across balanced and imbalanced datasets,
demonstrating consistent trends and highlighting the critical
influence of class order. The study offers insights for designing
more robust CIL frameworks for the SELD task.

Index Terms—Class-incremental learning, Sound event detec-
tion and localization (SELD), convolutional recurrent neural
network (CRNN).

I. INTRODUCTION

Sound Event Localization and Detection (SELD) is a cru-
cial array signal processing task that involves simultaneous
detection and spatial localization of sound events when they
occur [1]; the task is essential in applications such as robotics,
surveillance, and smart environments, where precise detection
and localization enhance situational awareness and decision-
making [1]–[4]. Recent advancements in deep learning have
significantly improved SELD models’ accuracy [1], [5]–[7].
However, these models are traditionally trained on a fixed
set of sound classes, limiting their adaptability in dynamic
environments where new sound classes must be integrated over
time. Retraining models from scratch each time new classes
are introduced is computationally expensive and impractical.
A common alternative is fine-tuning, where a pretrained model
is updated on new data [8]. However, fine-tuning often leads to
catastrophic forgetting, degrading performance on previously
learned classes when incorporating new ones [9], [10].

To address this challenge, Continual Learning (CL) offers
a promising framework that enables models to incremen-
tally learn new tasks while preserving previously acquired
knowledge [11], [12]. Class-Incremental Learning (CIL), a
subtype of CL, specifically focuses on sequentially integrating
new classes without full retraining [13], [14]. While CIL has
been effectively applied in fields like computer vision [15],
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natural language processing [16], and audio tasks such as
acoustic scene classification and keyword spotting [17]–[19],
few studies have explored its impact on SELD tasks [20], [21].

This work leverages CIL to SELD by systematically analyz-
ing how incremental learning affects class-wise localization er-
ror (LE) and F1-score. In our previous study, we concentrated
solely on developing a class-incremental learning-based SELD
model [21]. In this work, we investigate the impact of class
training order and their varying levels of training difficulty. A
continual learning model is trained in two stages: first on an
initial set of nine sound classes, followed by an incremental
stage where four new classes–varying in acoustic complexity–
are introduced. The CIL-SELD model employs a mean square
error (MSE)-based distillation loss, which minimizes discrep-
ancies between the outputs corresponding to the previously
learned classes in successive learners. Our experiments ex-
amine different class-combination strategies, evaluating their
impact on performance retention and knowledge transfer. This
approach efficiently expands SELD model capabilities without
retraining from scratch, significantly reducing computational
costs. By evaluating performance retention and knowledge
transfer, this study offers valuable insights into designing
adaptive SELD models capable of efficiently learning new
sound classes with minimal performance degradation.

The main contributions of this work are as follows:
• A comprehensive study of CIL for SELD, analyzing how

incremental learning impacts detection and localization
performance across various class-order strategies.

• Analysis of the influence of class difficulty in incremental
stages, demonstrating improved performance when intro-
ducing acoustically challenging classes in later training
stages.

• Performance comparison across balanced and imbalanced
datasets, offering insights into how the distribution of
classes in the dataset affects CIL performance for SELD.

II. CLASS-INCREMENTAL LEARNING FOR SELD

A signal comprising a mixture of multiple sound events
originating from various spatial locations is modelled as a
multi-output regression task to perform sound event detection
and localization. In this setup, the Activity-Coupled Cartesian
DOA (ACCDOA) format is used to jointly represent sound
event detection (SED) and direction of arrival (DOA) [5].
ACCDOA encodes sound event activation and spatial local-
ization using three coordinates (x,y,z) representing the event’s
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Fig. 1: Class-incremental learning for SELD task

DOA. An event is considered active if the magnitude of this
coordinate vector exceeds a predefined threshold, indicating
its predicted DOA. We use a convolutional recurrent neural
network (CRNN) architecture based on the DCASE 2021
baseline [22]. The model is trained on log-mel spectrograms
and acoustic intensity vectors extracted from multichannel
audio. The CRNN predicts active sound events and their spatial
positions by analyzing consecutive feature frames. The model
outputs a single ACCDOA sequence, encoding SED and DOA
information, allowing it to localize and detect sound events in
complex acoustic environments. Further details on the SELD
architecture can be found in [22].

Figure 1 illustrates the class-incremental learning frame-
work for SELD. The model is trained in two stages to
systematically evaluate the effects of class order and difficulty
on performance:
Stage 0 (Initial training): The model consists of a feature
extractor, F0, and a regression network, H0, initially trained
on a set of nine selected sound classes. The regression network
contains 9 × 3 output neurons corresponding to ACCDOA
predictions for the nine sound event classes.
Stage 1 (Incremental learning): The regression network is
expanded to accommodate four additional classes, resulting in
an updated regression network, H1, with (9 + 4) × 3 output
neurons. During Stage 1 training, both the feature extractor
and regression model parameters are updated using training
data of the new classes, while aiming to preserve performance
on previously learned classes.

A key challenge during incremental learning is catastrophic
forgetting, where the model’s performance on previously
learned classes deteriorates when new classes are introduced.
To address this, we employ a mean square error (MSE)-
based output distillation loss (LOD). This loss calculates
the discrepancy between the original model outputs (Stage
0) and the updated model outputs (Stage 1) for the nine
previously learned classes, ensuring knowledge retention. The
total training loss combines the distillation loss and the MSE
loss for new classes:

Ltotal = λ1LMSE + λ2LOD (1)

Here, LMSE represents the loss between the predicted and
actual outputs for newly introduced classes, while λ1 and λ2

controls the balance between preserving old knowledge and

learning new classes. This framework enables systematic in-
vestigation into how varying class combinations and difficulty
levels introduced in the two different learning stages affect
SELD performance, providing insights essential for effective
incremental learning in acoustic environments.

III. EXPERIMENTAL SETUP

A. Dataset

For this study, we generated a balanced synthetic dataset in
which all classes appear nearly equally likely temporally. The
generated dataset is balanced in terms of temporal coverage,
with each class occupying a roughly equal amount of time
(in minutes or timeframes) but not in terms of the number of
event instances per class, as each class has a different time
duration. The motivation for generating this balanced dataset
was to ensure equal representation of each target sound event
class throughout the dataset, reducing the bias of deep learning
methods in learning the large classes in detriment of the small-
size ones. The dataset was created using the data generation
pipeline provided by the DCASE Challenge 2022, following
the same method as the TAU-NIGENS Spatial Sound Scenes
2021 dataset [22]1 2.

The generated dataset comprises 1200 one-minute synthetic
spatial audio mixtures featuring sound events from 13 target
classes: Female speech, Male speech, Clapping, Telephone,
Laughter, Domestic sounds, Footsteps, Door open or close,
Music, Musical instrument, Water tap, Bell, and Knock. Each
spatial audio mixture is sampled at 24 kHz and presented
in a 4-channel first-order Ambisonics (FOA) format. Spatial
sound events are synthesized within an angular range of
[−180◦, 180◦] for azimuth and [−45◦, 45◦] for elevation,
ensuring realistic spatial distributions. Mixtures allow for
a maximum polyphony of 2 simultaneous sound events,
including the possibility of same-class event overlap. The
training set includes 900 recordings spatialized across 6
rooms, based on samples from the FSD50K development
set, while the testing set comprises 300 recordings from 3
separate rooms sourced from the FSD50K evaluation set. The
dataset generator uses real multipoint room impulse responses
captured in various rooms to synthesize static and moving
events at various configurations.

B. Baseline and evaluation metrics

We adopt the SELD baseline model from the DCASE 2022
Challenge, configured specifically for single-output ACCDOA
predictions [23]. The baseline model is simultaneously trained
and evaluated on the entire dataset, covering all 13 target sound
classes. The model optimizes a Mean Square Error (MSE) loss
during training between predicted and ground-truth ACCDOA
outputs. This baseline represents the conventional deep learn-
ing scenario without continual learning, as it simultaneously
learns all classes and thus provides reference performance for
classwise analysis. For incremental learning experiments, the

1https://github.com/sharathadavanne/ seld-dcase2022
2https://github.com/danielkrause/DCASE2022-data-generator
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TABLE I: Averaged performance metric across different class-ordering experiments on CIL-SELD

Experiment CIL Old model
F1
(1:13)

LE
(1:13)

F1
Cold(1:9)

LE
Cold(1:9)

F1
Cnew(10:13)

LE
Cnew(10:13) F1 LE

Baseline 41.6 19.3 - - - - - -
Exp1: 4 easy classes 39.4 19.0 35.5 19.9 47.7 16.9 37.9 18.9
Exp2: 1 difficult class 39.8 18.6 38.9 19.3 41.5 16.6 42.1 19.0
Exp3: 2 difficult classes 41.7 18.3 42.6 18.6 39.2 17.7 44.0 17.7
Exp4: 3 difficult classes 41.8 17.9 45.2 17.8 34.5 18.0 47.6 16.8
Exp5: 4 difficult classes 43.0 17.5 46.8 16.6 34.0 19.3 48.5 16.0

initial training (Stage 0) incorporates only 9 target classes,
treating the remaining 4 as interfering sounds. The model is
trained using the Adam optimizer (learning rate of 1e−3), with
a batch size of 128 for 100 epochs.

We evaluate SELD performance using the spatially-
thresholded F1-score to check how accurately events are de-
tected and penalize predictions whose directions deviate from
the actual source, based on a set angular threshold. Following
established practice, we set this threshold to T = 20◦ [6], [23].
We also calculate the Localization error (LE) individually for
each sound class and report the averaged value. LE quantifies
the mean angular difference by pairing predicted DOAs to
their nearest ground-truth references, providing complemen-
tary insights into the localization accuracy that is not captured
by threshold-based metrics. Both metrics are computed on
one-second non-overlapping frames. Detailed descriptions of
SELD evaluation metrics can be found in [6], [24].

IV. RESULTS AND DISCUSSIONS

We trained the continual learning model in two stages to
analyze the effect of class order and acoustic difficulty on
CIL performance for SELD. In each experiment, the first
stage involves training on 9 classes, followed by incremental
training on 4 additional classes. The acoustic difficulty of
each class was determined based on its baseline performance,
specifically characterized by the lowest F1-score and highest
LE from the SELD baseline model (Clapping, Telephone,
Door open/close, and Bell). This systematic variation allows
a comprehensive analysis of incremental learning behavior
under different class-order scenarios. The experiments were
designed by varying the ratio of difficult to easy classes
introduced in Stage 2, as follows:

• Experiment 1: Stage 2 with 4 easy classes.
• Experiment 2: Stage 2 with 1 difficult and 3 easy classes.
• Experiment 3: Stage 2 with 2 difficult and 2 easy classes
• Experiment 4: Stage 2 with 3 difficult and 1 easy class
• Experiment 5: Stage 2 with 4 difficult classes

A. Overall performance analysis

Table I summarizes the overall performance metrics across
various class-ordering scenarios evaluated in the CIL exper-
iments.The overall F1-score, computed by averaging scores
across classes, consistently improves as more difficult classes
are introduced in Stage 2. This shows that adding acousti-
cally challenging classes later during training boosts detection

Fig. 2: Glyph plots illustrating class-wise variations in F1-
score (left) and LE (right) across baseline and incremental
learning experiments. For F1-score, larger glyph shapes indi-
cate improved class-wise detection performance, while for LE,
smaller and compressed glyph shapes reflect better localization
accuracy.

performance, resulting in a 3.37% improvement. Similarly,
the average LE decreases by 9.33% as more difficult classes
are added in Stage 2, indicating better overall localization
accuracy. Models trained incrementally with difficult classes
achieve a higher overall F1-score and lower LE than the
baseline, which is trained simultaneously on all classes.

However, the forgetting phenomenon remains evident, caus-
ing performance degradation in both detection and localization
for the previously learned classes relative to their initial
performance. This can be seen from the same table, where
we provide separately calculated metrics for the original 9
classes (Cold) and the newly introduced 4 classes (Cnew). The
comparison shows that forgetting occurs more significantly
when fewer difficult classes are added in Stage 2. In these
cases, the F1-score and localization accuracy (lower LE)
notably decline for previously learned classes. This analysis
emphasizes that careful ordering and consideration of class
difficulty are crucial for effective incremental learning in
SELD tasks. It highlights the potential performance benefits
and the challenge of managing catastrophic forgetting.

Figure 2 shows glyph plots that illustrate the class-wise
variations in F1-score and LE across different incremental
learning scenarios and the baseline. Each radial axis represents
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Fig. 3: Classwise comparison of F1-score and LE for the Baseline, Experiment 1, and Experiment 4

one sound class, with its length proportional to the value
of the performance metric, forming an area that reflects the
overall magnitude across classes. A larger area indicates better
performance for the F1-score, while a smaller area signifies
lower LE and thus better performance in that metric. The
results show that introducing more difficult classes incremen-
tally (such as in Experiment 5 with four difficult classes)
leads to consistently higher F1-scores, reflected by larger and
more symmetric glyph shapes, and better localization accuracy,
indicated by compressed glyph shapes. In contrast, when
mostly easy classes are introduced in Stage 2 (Experiment 1),
glyph shapes become smaller, with lower overall F1-scores
and higher localization errors. This highlights the importance
of strategically ordering classes to optimize incremental SELD
performance.

B. Classwise performance analysis

Figure 3 illustrates the class-wise performance comparison
for F1-score and LE across three experimental conditions:
baseline, Experiment 1 and Experiment 5. It can be seen that
in most cases (9 out of 13 classes), incrementally introducing
difficult classes in Stage 2 yields improved performance, with
higher F1-scores and lower LE compared to both the baseline
and the incremental scenario with easy classes. This fur-
ther demonstrates the effectiveness of introducing acoustically
challenging classes later in the incremental training process,
leading to superior class-wise detection and localization accu-
racy.

C. Comparison with imbalanced datasets

In this section, we explore the impact of the total number
of occurrences of each class within the entire training dataset
on the proposed CIL strategy. As explained in Section III-
A, the generated dataset is intentionally balanced, ensuring
equal occurrence probability for all sound event classes. In this
section, we compare the performance of the balanced dataset

against two publicly available datasets: the highly imbalanced
DCASE 2021 dataset (with 12 classes) and the moderately
balanced DCASE 2022 synthetic dataset. Figure 4 (top row)
illustrates the temporal distribution of class-wise occurrence
for the DCASE 2021, DCASE 2022, and the balanced dataset
generated for this study, respectively. To select difficult classes
for training in Stage 2, we identified classes that exhibited
the lowest F1-score and highest LE in the SELD baseline.
Note that the DCASE 2022 dataset has identical classes in
the same order as our generated balanced dataset, enabling
direct comparisons between the two datasets. However, in
our balanced dataset, classes with the lowest F1-score and
highest LE in the SELD baseline represent acoustic difficulty.
In contrast, the low-performing classes in the DCASE 2022
dataset may reflect acoustic difficulty or insufficient data, as
low occurrence inherently limits the model’s ability to learn
effectively.

Figure 4 (bottom row) compares the class-wise F1-scores
obtained from the SELD baseline and the incremental learning
scenario with four difficult classes introduced at Stage 2,
across the three datasets. Incremental training on difficult
classes substantially improved the F1-scores for those classes
in all three datasets, demonstrating that strategically introduc-
ing difficult classes (either due to fewer occurrences in the
dataset or being acoustically complex) effectively enhances
detection accuracy. These results show the effectiveness of
the incremental learning strategy across datasets with varying
levels of class imbalance.

V. CONCLUSIONS

In this study, we explored CIL for the SELD task, sys-
tematically analyzing how incremental learning affects detec-
tion and localization across different class-ordering scenarios.
Although CIL is traditionally used when future classes are
unknown, our study illustrates that incremental learning can
be deliberately leveraged to handle challenging scenarios. The
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Fig. 4: Comparison of class-wise occurrence distributions (top row) and corresponding F1-scores (bottom row) between SELD
baseline and incremental learning (4 difficult classes in Stage 2) across highly imbalanced (DCASE 2021), moderately balanced
(DCASE 2022), and balanced (this study) datasets.

results show that strategically introducing difficult classes later
during incremental stages, whether due to acoustic complexity,
limited data availability, or other factors, improves overall
SELD performance. This approach leads to improved overall
results and more balanced class-wise performance compared
to training in all classes simultaneously.
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