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Abstract—As unmanned aerial vehicles (UAVs) become in-
creasingly common, concerns about security, privacy, and noise
pollution have intensified. As a result, the need for accurate and
efficient UAV localization and tracking has become critical for se-
curity operations and timely intervention, yet algorithmic audio-
based localization methods have limitations in complex outdoor
environments. This study presents an approach to synthesizing
drone acoustic signals and generating training datasets designed
for deep neural network (DNN)-based localization. Using these
simulated signals, two neural networks, SELDnet ACCDOA and
Neural SRP, were trained and evaluated for accurate direction-
of-arrival (DOA) estimation, addressing challenges specific to out-
door acoustic conditions. Their performance was benchmarked
against the steered response power with phase transform (SRP-
PHAT) methods. To further validate the models’ effectiveness,
real-world drone data were collected and used for testing.
Experimental results indicate that neural networks trained on
synthesized data achieve effectiveness comparable to SRP-PHAT,
validating the reliability of the simulation approach, with Neural
SRP even outperforming SRP-PHAT-based algorithms in DOA
estimation accuracy.

Index Terms—UAVs, localization, sound synthesis, direction of
arrival estimation, deep neural network.

I. INTRODUCTION

As drones have become more affordable and advanced,
their widespread use raises concerns about security, privacy,
and noise [1]. Automated drone localization and tracking
are essential for security services and timely intervention.
Recent research on audio-based drone localization has ex-
plored methodologies based on signal processing as well as
techniques leveraging deep learning. Algorithmic methods,
such as cross-correlation methods like generalized cross-
correlation with phase transform (GCC-PHAT) [2] and SRP-
PHAT [3], or subspace methods like multiple signal classifi-
cation (MUSIC) [4], exhibit limitations in handling complex
outdoor environments characterized by echoes, diverse noise
sources, and distant or multiple UAVs [5]. Consequently, deep
learning techniques have emerged as a promising alternative,
demonstrating superior potential to address the challenges of
complex acoustic environments [6] [7].

Grumiaux et al. [8] extensively reviewed various neural
network approaches for sound source localization (SSL) in
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indoor environments, covering aspects such as network ar-
chitecture, input features, output strategies, dataset types, and
model training strategies. However, two key distinctions exist
between conventional SSL research and drone localization: the
acoustic environment and the characteristics of the acoustic
signals. While SSL studies predominantly focus on indoor
settings, drone operations typically occur in outdoor environ-
ments, including suburban and wilderness areas. Moreover,
SSL research primarily focuses on human speech, which
differs significantly from the mechanical noise produced by
drones. Furthermore, the movement patterns of humans and
drones vary considerably, necessitating further investigation
into the unique acoustic and spatial properties of drone signals.

Another challenge in neural network-based drone localiza-
tion is the need for large-scale datasets to ensure reliable
training, which is both laborious and resource-intensive. To
address this, various studies have analyzed drone acoustics
and developed sound synthesis models. Acoustic analysis of
drone noise has been conducted in [9] and [10], while an
auralization model incorporating oscillators and autoregres-
sive noise modeling was proposed in [11]. Heutschi et al.
[12] synthesized real-world drone signals based on laboratory
recordings, considering factors such as drone type, flight path,
and wind conditions. These studies demonstrate the feasibility
of drone sound modeling, providing a foundation for dataset
generation in localization research.

This paper is organized as follows. Section II details the
synthesis of drone signals and dataset generation we employed,
while Section III presents the implemented localization al-
gorithms, encompassing two neural networks alongside SRP-
PHAT and its modified versions. Section IV describes datasets,
evaluation metrics, and the experimental setup, with results
analyzed in Section V. Finally, Section VI concludes the paper
and explores future research directions.

II. SYNTHESIS OF DRONE SIGNALS AND DATASET
GENERATION

The construction of a drone auralization model is essential
to simulate the spectro-temporal and spatial characteristics
of a drone during flight. Its noise signal, primarily gener-
ated by rotating propellers, is synthesized using a procedural
audio model that integrates oscillators and digital filters.
This approach captures tonal components with modulations in
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amplitude and frequency while incorporating white noise to
represent stochastic elements, resulting in a realistic emission
signal.

A. Drone tonal sound emission

In emission models, the tonal characteristics of a drone are
determined primarily by the rotational speed of its rotors, with
the revolutions per minute (RPM) being a key factor. Rotor
speeds vary dynamically based on drone type and maneuver
types, such as hovering, climbing, descending, or forward
flight. These variations in RPM can be referenced in [12],
which discusses the relationship between different maneuver
types, drone models, and corresponding rotor speeds, with
the fundamental frequency determined by multiplying the
RPM by the number of blades per motor, effectively doubling
for typical two-blade configurations. To reproduce the tonal
component, an oscillator is used to model the amplitudes of
purely mono-frequent oscillators. This can be achieved using
sinusoidal waves, or alternatively, pulse wave oscillators or
bipolar pulse wave. This process simulates the tonal charac-
teristics of the drone in flight, thus generating the characteristic
“bee” sound of a drone in auralization.

B. Drone stochastic sound emission

In realistic scenarios, the audible rotor speed of a drone also
varies due to propeller imperfections, transitions between dif-
ferent flight maneuvers, and external environmental influences
such as wind. To achieve perceptually plausible auralizations,
it is essential to account for fluctuations in the sound field.

Since random fluctuations caused by varying wind con-
ditions lead to frequency variance, it exhibits a linear rela-
tionship with the normalized standard deviation of rotational
speed σn and the average wind speed (vw, e.g., 2.5 m/s for
a specific flight) [12]. This relationship can be expressed as
σn = a + b · |vw| where parameters a and b are available in
[12].

To ensure smooth transitions in rotational speed during
maneuver changes, a sigmoid function is employed to avoid
abrupt shifts. Furthermore, due to propeller imperfections,
the fundamental frequency derived from the rotor speed is
inherently variable. Therefore, the mean of the fundamental
frequency is slightly modulated over time. For example, small
random shifts within a range of -5 Hz to +5 Hz are periodically
introduced to reflect natural variability.

Drones typically have multiple rotors, most commonly four
or six, whose signals are combined with added white noise to
represent stochastic components.

C. Amplitude and frequency modulations

Since the dominant harmonics of rotor-generated tones
generally fall between 100 Hz and 2000 Hz [5], amplitude
modulation is applied to these harmonics to enhance realism,
followed by a low-pass filter, such as a second-order Butter-
worth filter with a cutoff frequency of 2400 Hz, to smooth the
signal and remove high-frequency noise.

D. Movement and spreading

To generate realistic drone signals at the positions of the
simulated microphone array, several acoustic propagation ef-
fects must be accounted for, including radiation directivity,
geometric spreading, reflections, and background noise. The
received signal mi(t) at the ith microphone consists of a
delayed and attenuated version of the drone’s emitted sound
and background noise, modeled as mi(t) = Lprop · Lrad ·
s(t − τi) + vi(t), where s(t) is the emitted drone signal,
and τi is the propagation delay determined by the geometric
distance between the drone and the microphone. A Doppler
shift further affects the perceived frequency when the drone is
in motion. The term Lrad represents radiation directivity, which
depends on the emission angle but remains independent of
rotor speed and flight procedure [11] [12], while Lprop accounts
for distance-based propagation attenuation. The background
noise vi(t) originates from various environments (urban, sub-
urban, or rural) and can be obtained from real-world recordings
captured with an actual sensor array or simulated under spatial
constraints, such as a diffuse noise model [13].

Additionally, ground reflections influence the received sig-
nal with the reflection coefficient which varies with ground
material properties (e.g., asphalt, soil, or grass), affecting
how much sound is absorbed or reflected. By incorporating
these factors, we ensure a realistic synthesis of drone signals,
enabling accurate dataset generation for localization tasks.
Code for the synthesis of drone signals and dataset generation
in this paper is available on GitHub1.

III. LOCALIZATION ALGORITHMS

A. SRP-PHAT-based algorithms

SRP-PHAT is chosen as the baseline method due to its
widespread adoption and effectiveness in estimating the DOA
of a sound source through beamforming and phase-based
processing. This paper employs the conventional SRP-PHAT
approach [3], along with its modified variants, SRP-PHAT-β
[14] and SRP-PHAT-mask, for drone localization.

The conventional SRP-PHAT computes the correlation be-
tween the signals received by the microphones and the cu-
mulative steered response at each candidate location. SRP-
PHAT-β enhances it by incorporating a weighting factor β
(0 ≤ β ≤ 1) into the GCC-PHAT computation, preserving
partial magnitude information and enhancing performance in
low signal-to-noise ratio (SNR) environments [14] [15]. Since
drone signals are primarily concentrated within a specific
frequency range [5], we propose SRP-PHAT-mask, which
applies a binary mask in the frequency domain during GCC-
PHAT computation to preserve relevant components while
suppressing noise.

B. Data-driven methods

The primary focus of this paper is a data-driven approach
for drone DOA estimation, utilizing neural networks trained
on simulated datasets. Two models, SELDnet ACCDOA and

1https://github.com/SOUNDS-RESEARCH/DroneSynthesis2DOA
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Neural SRP, are selected for reproduction and evaluation to
assess their effectiveness.

1) SELDnet ACCDOA: SELDnet [Sound Event Localiza-
tion and Detection Network] is a convolutional recurrent
neural network (CRNN) originally designed for joint sound
event detection (SED) and three-dimensional (3D) DOA esti-
mation [16]. It employs three convolutional layers for feature
extraction, two gated recurrent units (GRUs) for temporal
dependencies, and dual output branches for DOA regression
and sound event classification. The output is a tensor that
allows for real-time, frame-by-frame prediction of the source’s
angular position, with each frame providing an updated esti-
mate of the direction. This direction is represented by a unit
vector with Cartesian coordinates (x, y, z) ∈ [−1, 1].

For drone localization, we adapted SELDnet into ACCDOA
[Activity-Coupled Cartesian DOA] [17] by removing the SED
branch and simplifying the loss to mean square error (MSE).
Additionally, the original input features, based on the short-
time Fourier transform (STFT), were replaced with GCC-
PHAT to enhance spatial information [18], and the model was
simplified to single-event regression to reduce complexity.

2) Neural SRP: The Neural SRP model extends sound
event localization and detection (SELD) to arbitrary micro-
phone array geometries by incorporating microphone coordi-
nates into its feature representation, enabling it to process
signals from different arrays without being constrained to
the specific array used during training [19]. Its architecture
consists of a pairwise network P and a global decoder D.
The pairwise network processes the GCC-PHAT between two
channels and corresponding microphone coordinates through
three convolutional layers, two GRUs, and a two-layer multi-
layer perceptron (MLP). For M microphones, M(M − 1)/2
such pairs are processed in parallel, with their outputs summed
and fed into the global decoder D. For single-drone localiza-
tion, the SED branch is removed as well, retaining only the
DOA estimation branch with a two-layer MLP. This design
integrates the coordinate information of the array, enabling
robust generalization across diverse array configurations.

IV. EVALUATION

A. Datasets

Data-driven localization algorithms are trained using syn-
thetic data, whereas all algorithms are evaluated on both
synthetic and real-world datasets. The synthetic dataset is gen-
erated using real-world drone parameters from [12], including
DJI Mavic 2 Pro, Inspire 2, S-900, and F-450, all featuring four
or six rotors with two-blade propellers, ensuring the realism of
the simulations. Both datasets employ an 8-microphone array
arranged in a 15 cm cubic configuration, with its coordinate
system and corresponding image presented in Figure 1.

1) Synthetic drone dataset: In the simulations, a far-field
sound source is assumed with two types of ground reflections
based on surface materials. The microphone array is fixed at
the 3D coordinate center, while the drone follows a 3D flight
path within a ±200 m range in the x-y plane and a maximum

Mic X (m) Y (m) Z (m)

1 0.05625 0.0375 0.15
2 0 0.09 0.15
3 0.01875 0.15 0.1145
4 0.05625 0.15 0.009
5 0.15 0.15 0.075
6 0.13125 0.075 0.009
7 0.15 0.01875 0.15
8 0 0 0

(a) Microphone array coordinates
(b) Real-world micro-
phone array

Fig. 1: Microphone array configuration

altitude of 47 m, always flying above the array with only one
drone per flight.

The synthetic dataset models realistic drone dynamics with
random transitions between hovering, ascending, descending,
and forward flight. Each flight includes four state transitions,
totaling 1400 flights lasting between 10 and 121 seconds,
resulting in approximately 1226 minutes of data. Half of the
samples contain no background noise, while the other half
incorporate six distinct environmental noise recordings (e.g.,
urban, suburban, rural), simulated via the diffuse model [13].
For the samples with environmental noise, the SNR, defined
as the ratio of the received drone signal power to background
noise power, is dynamically set, ranging approximately from
-5 dB to 15 dB at 3 m and from -30 dB to -10 dB at 50 m,
making it distance-dependent.

2) Real-world drone dataset (ground truth localization):
The real-world drone dataset was collected by Fraunhofer
IDMT during an experiment in August 2022 in Berne, Lower
Saxony, Germany. The dataset includes recordings of drones
(DJI Phantom, DJI Mavic, and Align models) performing
static, linear, and random flights. A total of eight reliable
flight recordings were chosen, with durations ranging from
4 to 23 minutes, summing to approximately 106 minutes.
Most flights were within 200 m of the array, with a maximum
distance of 430 m.

Each drone and array was equipped with a GPS-Logger 3
(SM Modellbau), providing high-precision location data with
±2.5 m accuracy and a 10 Hz update rate. This real-time
latitude and longitude data allowed calculation of the drone’s
distance and azimuth relative to the microphone array. The
coordinate system was defined with the x-axis northward, the
z-axis upward, and the y-axis following the right-hand rule,
enabling azimuth angle computation.

The Haversine formula [20] was used to calculate the
shortest distance between two points on the Earth’s surface,
assuming equal altitude. The azimuth was computed based on
the dihedral angle in space. These calculations provided the
drone’s direction and corresponding azimuth angles, critical
for validating the trained models.

B. Evaluation metrics

1) DOA error: The DOA error is computed as the angular
difference between the predicted and true DOA in 3D space.
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TABLE I: Comparison of localization algorithms using different GCC-PHAT inputs on synthetic and real-world datasets.

Synthetic Drone Test Set Real-World Drone Dataset

Algorithms GCC-PHAT - with β with mask β+mask - with β with mask β+mask

SELDnet ACCDOA
DOA error 9.7 11.1 9.5 11.1 37.3 42.2 39.2 44.1

ER20◦ 11.9% 12.1% 11.6% 13.0% 48.3% 52.1% 52.5% 49.5%

Neural SRP
DOA error 9.6 11.1 10.9 10.6 20.4 15.9 23.3 19.1

ER20◦ 10.4% 11.4% 13.1% 12.3% 28.5% 23.4% 33.6 % 30.3%

SRP-PHAT
DOA error 27.8 25.4 24.7 25.1 29.4 24.1 23.0 21.6

ER20◦ 28.5% 24.3% 24.9% 24.6% 29.4% 26.0% 25.6% 24.2%

2) Error rate ER20◦ : The ER20◦ is calculated by consid-
ering frame-wise predictions as true positives only when the
angular difference from the reference is less than 20◦.

Although the flight durations vary, the overall DOA error
and ER20◦ are calculated as the unweighted average of the
individual errors across all flights, regardless of their respective
durations.

C. Experiments

1) Model training and parameter settings: Different DOA
estimation algorithms require specific parameter configura-
tions. For SRP-PHAT and its modified versions, 1000 can-
didate directions are uniformly distributed using spherical
Fibonacci mapping [21], ensuring an even distribution across
the surface. β is chosen to be 0.7 for SRP-PHAT-β algorithm
[15]. For SRP-PHAT-mask, a mask spanning 250 Hz to
7000 Hz is strategically designed to preserve relevant spectral
components of the drone signal while effectively mitigating
noise interference.

To ensure real-time applicability, both SELDnet ACCDOA
and Neural SRP employ unidirectional GRU layers. The model
sizes for SELDnet ACCDOA and Neural SRP are 0.80M and
0.79M parameters, respectively.

All algorithms make frame-wise predictions with a 32 ms
frame length and no overlap. To handle the varying sequence
lengths in dynamic drone flight durations, Bucket Batching
is used to group sequences of similar lengths, minimizing
padding. Shorter sequences are padded within each batch, with
the padded output for DOA coordinates set to zero (x, y, z =
0), and a masking mechanism is applied to exclude the padded
regions from training.

The synthetic drone dataset follows a standardized data
split of 70% for training, 15% for validation, and 15% for
testing. Model training is conducted over 300 epochs with
early stopping, utilizing a dynamic learning rate initialized at
0.001 and a batch size of 32.

2) Selecting model input format: The original SELDnet
model used STFT-based features, but GCC-PHAT showed
improved performance [18]. However, GCC-PHAT alone may
be insufficient for drone signals due to their narrowband nature
and noise sensitivity. To better capture drone characteristics,
modified formats, GCC-PHAT-β and GCC-PHAT-mask, were
introduced, both derived from SRP-PHAT cross-correlation
computations (Section III-A) and using the same parameters
to ensure comparability. Furthermore, considering the inter-

microphone time lag, 48 central GCC bins were used for each
frame.

V. RESULTS AND DISCUSSION

Table I presents the DOA prediction results for both the
synthetic test set and the real-world dataset, with neural
networks trained solely on the synthetic train set. On the
synthetic test set, SRP-PHAT performs worse than neural
network-based methods, with DOA errors ranging from 25° to
28°, primarily due to its poor performance on noisy samples. In
contrast, SELDnet ACCDOA and Neural SRP achieve lower
DOA errors, demonstrating greater robustness in both clean
and noisy conditions. SELDnet ACCDOA with GCC-PHAT-
mask achieves the lowest DOA error of 9.5°, while Neural
SRP with GCC-PHAT yields the lowest ER20◦ at 10.4%. In
other cases, performance differences remain minor.

The trained models are also evaluated on the real-world
drone dataset, with results presented in the right half of Table I
alongside comparisons to SRP-PHAT-based algorithms. Since
the real-world dataset provides only azimuth ground truth,
DOA error is computed as the angular difference between
the predicted and true azimuth values, without considering
elevation. The results demonstrate that even with unseen
and slightly mismatched data, the models effectively predict
DOA angles, confirming the simulated dataset’s validity and
the models’ generalization ability. The best performance is
achieved by Neural SRP with GCC-PHAT-β, yielding a DOA
error of 15.9° and an ER20◦ of 23.4%, outperforming the
best SRP-PHAT-based result (21.6° DOA error, 24.2% ER20◦ )
obtained with β and mask. In general, the DOA error remains
high due to outdoor environmental noise and the typically large
drone-to-microphone distances, reaching over 400 m. Neural
SRP surpasses SRP-PHAT-based algorithms, indicating that
the simulated dataset closely approximates real-world drone
conditions, including dynamic flights with varying background
noise. SELDnet ACCDOA underperforms compared to SRP-
PHAT, potentially due to its increased sensitivity to noise
variations leading to weaker generalization.

Notably, for SRP-PHAT-based methods, incorporating β or
a mask consistently reduces errors in both datasets. How-
ever, for neural networks, these modifications do not always
improve performance and may even degrade accuracy, par-
ticularly on the test set. In the real-world dataset, using β,
which means adding some amplitude information, improves
accuracy for Neural SRP. In contrast, applying a mask worsens
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performance, likely due to reduced input information or the
networks’ inherent noise suppression capability, indicating
that neural networks already learn to handle noise without
additional masking.

To further evaluate the efficacy of the trained models, a
sample from the real-world drone dataset is selected for visu-
alization. Figure 2 presents the drone spectrogram from one
array channel alongside azimuth angle estimations obtained
from Neural SRP (using GCC-PHAT-β as input) and SRP-
PHAT-β-mask, based on one real drone flight. While the
errors of both methods are comparable, SRP-PHAT exhibits
significant outliers, whereas Neural SRP demonstrates robust
performance without such anomalies. This indicates that,
compared to SRP-PHAT, the recurrent structures in neural
networks provide some degree of tracking capability, further
highlighting the importance of dynamic data.

(a) Drone spectrogram (b) Azimuth estimation in DOA

Fig. 2: Visualization of a real DJI Mavic flight

VI. CONCLUSIONS AND FUTURE WORK

This study synthesized a drone audio dataset and evaluated
various SSL methods, including SRP-PHAT-based algorithms,
SELDnet ACCDOA, and Neural SRP. It highlights the feasibil-
ity of training localization models using synthetic drone acous-
tic data based on drone tonal characteristics, thereby reducing
reliance on real-world data collection. Experimental findings
further validate this approach for DOA estimation, showing
that trained neural networks achieve performance comparable
to or even exceeding that of SRP-PHAT. Future work includes
integrating motor sounds into the synthesis process, exploring
Kalman filters for DOA refinement, and developing specialized
neural network architectures for UAV localization. Challenges
also remain in locating multiple drones and using multi-array
systems for precise spatial coordinates.
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