
Pruning State Space Models with Model Order
Reduction for Efficient Raw Audio Classification

Matthias Bittnera, Daniel Schnölla, Dominik Dallingera, Matthias Wessa, Axel Jantscha
aChristian Doppler Laboratory for Embedded Machine Learning, TU Wien, Austria, {firstname.lastname}@tuwien.ac.at

Abstract—Deep State Space Models (SSMs) have shown good
performance on long-sequence classification tasks such as raw
audio classification. Targeting edge devices it is crucial to further
improve their inference efficiency. However, pruning techniques
are not well explored for SSMs. We propose a layer-wise Model
Order Reduction (MOR) technique based on balanced truncation
combined with an iterative pruning algorithm to increase the
efficiency of already trained SSM models, without the need
for retraining. Specifically, we focus on S-Edge models, a class
of hardware-friendly SSMs. Evaluated on the Google Speech
Commands dataset we prune models ranging from 141k–8k
in parameters and 94.9%–90.0% in test accuracy. Given an
accuracy loss constraint of 0.5pp we are able to find models
which reduce parameters by 36.1% for the biggest and 5.8% for
the smallest model.

Index Terms—Pruning, Model Order Reduction, Deep State
Space Models, Raw Audio Classification

I. INTRODUCTION

The amount of machine learning applications and the de-
mand for deploying them to low-cost edge devices is con-
stantly increasing. This also raises the need for methods that
increase the Neural Networks (NNs) efficiency by reducing
their memory, storage, and computational footprint.

In the early days of deep learning, Recurrent Neural Net-
works (RNNs) were the natural choice for modeling sequential
data and architectures such as the Gated Recurrent Unit
(GRU) [1] and the Long Short-Term Memory (LSTM) [2]
have significantly improved the ability to learn long-term
dependencies by addressing the vanishing gradient problem.
However, scaling traditional RNNs to long sequence tasks is
a challenge due to their inherent sequential nature [3]. The
Transformer architecture improved the long sequence reason-
ing tasks with the parallelizable attention mechanism [4]. The
attention mechanism mitigates the vanishing gradient problem
by modeling interactions between any two time points with
direct weights in the network. This comes with the drawback
of taking a step back in efficiency. Computational and memory
costs scale quadratically O(T 2) with the sequence length T ,
compared to RNNs, with constant memory and, computational
costs that scale linearly O(T ).

The recent advent of using deep structured State Space
Models (SSMs) motivated by Linear Time Invariant (LTI)
continuous-time SSMs with architectures like the S4
model [5], along with its variants (DSS, S4D, S5, LRU

This work is supported by the Austrian Federal Ministry for Digital and
Economic Affairs, the National Foundation for Research, Technology, and
Development, the Christian Doppler Research Association.

etc.) [6]–[9] has shown remarkable results on long-range
reasoning tasks such as the Long Range Arena [10] and
raw audio classification [11], where vanilla RNNs struggle.
Efficiency-wise deep continuous-time SSMs overcome the
O(T 2) bottleneck of attention layers by materializing the
discrete variant of the Linear Time Invariant (LTI) systems’
differential equations, which is equivalent to an RNN at
inference time [5]. Motivated by the strong performance of
deep SSMs on long-sequence raw audio classification tasks,
we explore if the mathematically well-defined LTI state space
structure can be used to improve the efficiency of deep SSMs
along with the following contributions:

Layerwise Model Order Reduction. We propose using
Model Order Reduction (MOR) techniques stemming from
linear control theory for increasing the efficiency in terms
of parameters and number of operations for already trained
complex-valued continuous-time diagonal SSMs. Specifi-
cally, we show how to balance, truncate, and rediagonalize
continuous-time S-Edge SSM layers, a hardware-friendly SSM
version (see Algorithm 1). For truncating the balanced systems
we either use Direct Truncation (DT) or Singular Pertubation
(SP). The layer-wise approach allows us to analyze the number
of states that we are able to eliminate for individual layers.
This gives an intuition about the pruning capacity (see Fig. 1
and Tab. II) and can be used to weight per-layer accuracy loss
constraints for the model pruning.

Model Pruning Algorithm. Given an accuracy loss con-
straint, we provide a pruning algorithm, to iteratively reduce
the parameters of S-Edge models (see Algorithm 2).

The rest of the paper is structured as follows: Section II
reviews related work and background. Section III shows
the design of S-Edge layers. Section IV presents the layer-
wise MOR and the iterative model pruning algorithm for
S-Edge models. Section V shows results for five different
S-Edge model configurations based on the Google Speech
Commands [11] dataset.

II. BACKGROUND AND RELATED WORK

A. Deep State Space Models

One key difference between SSMs and standard RNNs is the
linear recurrence in the hidden state, which allows for efficient
and parallelizable computation of the hidden state recurrence
based on associative scans [8]. Setting the foundation for
good performance on long-range reasoning tasks, where RNNs
struggle, Gu et al. proposed the HiPPO framework [12]
for structured initialization of SSM layers. The resulting S4

271ISBN: 978-9-46-459362-4 EUSIPCO 2025



layer is modeled using multiple Single Input Single Output
(SISO) systems. The SISO approach allows for training in
the frequency domain [5]. To improve training and inference
speed, several authors proposed diagonal approximations of
the state transition matrix initializations, resulting in S4D [6],
DSS [7] and the first diagonal Multi Input Multi Output
(MIMO) version S5 [8].

B. Diagonalization and Balancing of Linear SSMs

State space transformations are a common practice in linear
control theory to transform systems into representations that
have the same input-output behavior but are, e.g., structured
for easier derivation of the solution of the system (Diag-
onalization), or structured that states are sorted by equal
controllability and observability (Balancing) [13]. Assuming a
transformation matrix T we can apply the change of variables
x = Tz to the original system ẋ = Ax+Bu, y = Cx in order
to get to the transformed system ż = T−1ATz + T−1Bu,
y = CTz. If the Matrix A has only distinct eigenvalues
we are able to diagonalize the system and TD corresponds
to the linear independent eigenvectors resulting from the
eigendecomposition ATD = TDΛ, where Λ = diag(λ) is
a diagonal matrix with the individual eigenvalues λ.

If we set the focus on significant coherent structures in-
fluencing the system’s input-output behavior we can apply a
balancing transformation TB. We outline the specific steps
to get to TB as used in our study. Under the assumption
that the system is stable (ℜ(λ) < 0) we first compute the
controllability Gramian P and the observability Gramian Q
of the original system, by solving the continuous Lyapunov
equations AP+PAH =−BBH , and AHQ+QA=−CHC.
Second step, computes the square root matrix P1/2. Third
step, solves the singular value decomposition UΣUH =
P1/2QP1/2. Last step, computes the balancing transform with
TB=P1/2UΣ−1/4. We refer the interested reader to the book
of Antoulas [14] for a deeper understanding of MOR and the
balancing transformation.

C. Pruning Techniques for Deep State Space Models

Forgione et al. [15] apply MOR for the Linear Recurrent
Unit (LRU). Specifically, they apply the Balancing Transfor-
mation and they compare Direct Truncation (DT), Singular
Pertubation (SP), and modal approximations. They evaluate
their approach on an industrial vibration regression task.
However, compared to our work, their model parameters are
modeled in discrete-time, and they do not consider analyzing
the pruning capacity on a per-layer base.

Ezoe et al. [16] propose model compression for diagonal
S4 layers using balanced truncation. They propose a three-
step approach of first pre-training the model at default size
and then reducing the order of the individual SISO systems in
the continuous-time parameter space. They keep the sampling
rates ∆i fixed for each individual SISO system, during MOR.
As a third step, they perform the main training in the reduced-
order parameter space. They evaluate on the Long Range
Arena tasks [10]. They do not analyze the model performance

without the re-training phase, and they do not analyze how
strong one could prune already trained models.

Gwak et al. [17] propose LAST (Layer-Adaptive STate)
pruning for deep SSMs. They provide a layer-wise modal-
truncation approach by reducing the state size based on nor-
malized H-Infinity scores. They analyze S4 and S5 layer types
and perform pruning in the discrete-time domain. They men-
tion that balanced truncation induced a non-diagonal matrix
representation, which limits its applicability to the diagonal
framework of current SSM structures. However, we show that
it is possible to use balanced truncation with rediagonalization
for pruning models without the need for retraining.

III. S-EDGE A HARDWARE FRIENDLY SSM DESIGN

Within this work, we consider optimizing S-Edge [18], a
hardware-friendly SSM layer, which extends the S5 model
definition by dynamic input/output shapes and input/output
bias units. An S-Edge layer is modeled as a complex-valued
continuous-time system,

˙̃x(t) = Ãx̃(t) + B̃u(t) + b̃

y(t) = ℜ(C̃x̃(t) + c̃),
(1)

with the complex-valued hidden state x̃(t) ∈ CH, a diagonal
state matrix Ã= diag(λ̃) ∈ CH×H with the diagonal elements
λ̃ ∈ CH directly representing the complex eigenvalues. The
input matrix B̃ ∈ CH×Y, the input bias b̃ ∈ CH , the output
matrix C̃ ∈ CO×H, and the output bias c̃ ∈ CO are also
complex valued. The inputs u and outputs y of an individual
SSM layer are considered to be real-valued.

During training and inference, it is necessary to map the
continuous system to a discrete version (e.g., via Zero Order
Hold (ZOH)). SSM layers do this with a learnable time-scale
parameter ∆∈RH per hidden dimension and a global sampling
rate Ts. By adjusting Ts, the discrete SSM layers can operate
at different effective sampling rates. Due to the diagonal
implementation of the state transition matrix discretization can
be performed efficiently on an elementwise basis,[

B̃d b̃d

]
= diag

(
λ̃

–1
◦ (λ̃d − 1)

) [
B̃ b̃

]
,

λ̃d = e∆◦λ̃Ts , C̃d = C̃, c̃d = c̃.
(2)

The discrete recurrence of the S-Edge models forward path
is then defined by,

x̃k = λ̃d ◦ x̃k−1 + B̃duk + b̃d,

yk = ℜ(C̃dx̃k + c̃d)

Output = Skip(uk) + LeakyReLU(yk),

(3)

where Skip ∈ RO×Y is a trainable real-valued matrix. Based
on the discrete representation we get the following number of
parameters for an S-Edge layer,

Total Parameters = 2YH︸︷︷︸
B̃

+2OH︸︷︷︸
C̃

+ YO︸︷︷︸
Skip

+4H +O︸ ︷︷ ︸
λ̃d, biases

. (4)

This work focuses on decreasing the effective state dimen-
sion H in order to decrease parameters and operations.

272



Algorithm 1: MOR for an individual S-Edge Layer
Input: (λ̃, B̃, b̃, C̃, c̃,∆) // Default layer param.
R // Reduced order
Γ // Approximation method (DT or SP)

Output: (λ̃R, B̃R, b̃R, C̃R, c̃R,∆R) // Red. param.
// Compute true continuous-time input repres.

λ̃tr = ∆ ◦ λ̃, B̃tr = ∆ ◦ B̃, b̃tr = ∆ ◦ b̃
∆R = 1 // Reset time scale parameter.

(ÃB, B̃B, b̃B, C̃B, c̃B) = Balance(diag(λ̃tr), B̃tr, b̃tr, C̃, c̃)
(ÃT, B̃T, b̃T, C̃T, c̃T) = Ord.-Red.(R, Γ ÃB, B̃B, b̃B, C̃B, c̃B)
(λ̃R, B̃R, b̃R, C̃R, c̃R) = Rediagonalize(ÃT, B̃T, b̃T, C̃T, c̃T)

IV. MODEL ORDER REDUCTION FOR DEEP DIAGONAL
STATE SPACE MODELS

Within this work, we investigate how to apply MOR tech-
niques, stemming from control theory, in order to decrease the
number of parameters and operations, for already trained SSM
networks. Specifically, we focus on S-Edge models.

A. Model Order Reduction for Diagonal S-Edge Layers

An important step for successful and correct MOR of
continuous time MIMO SSM variants, such as S5 [8] and
S-Edge [18], which utilize an additional time scale parameter
vector ∆ ∈ RH is to correctly represent the true continuous
time dynamics. The time scale vector is originally motivated to
be a learnable sampling-rate scaling parameter for each state
dimension and is normally evaluated during the discretization
step. However, when applying the balancing transformation for
MOR, it is crucial to view ∆ as a scaling in the continuous
domain and to balance the true continuous-time dynamical
system. Otherwise, the continuous and discrete systems simply
do not represent the same dynamic behavior (also discussed by
Bonassi et al. [19]). Now viewing ∆ as a scaling in continuous
time for the S-Edge layer results in the true continuous
diagonal eigenvalues λ̃tr = ∆ ◦ λ̃, the true continuous input
matrix B̃tr = ∆ ◦ B̃ and the true input bias b̃tr = ∆ ◦ b̃.

Applying the change of variables x̃ = Tz̃ to the S-Edge
continuous-time representation (Eq. 1) given a transformation
T (either balancing TB or diagonalization TD in our ap-
proach) we get the following transformed representation

˙̃z(t) = T−1ÃTz̃(t) +T−1B̃u(t) +T−1b̃

y(t) = ℜ(C̃Tz̃(t) + c̃),
(5)

where we see how to transform the state matrix, the input
matrix, the input bias and the output matrix.

Algorithm 1 highlights our proposed MOR reduction
pipeline for getting from the default diagonal S-Edge layer
parameters with order H to the reduced system with order
R. Balancing the true continuous-time parameters with TB

(how to derive TB see Sec. II-B), we observe the balanced
system matrices, ÃB = T−1

B diag(λ̃tr)TB, B̃B = T−1
B B̃tr,

b̃B = T−1
B b̃tr, C̃B = C̃TB, c̃B = c̃. This balanced

representation is already sorted (in terms of controllability and
observability) in the state dimension and allows to partition
and truncate based on a given reduced order R. If we now

partition the balanced S-Edge layer parameters (ÃB, B̃B, b̃B,
C̃B, c̃B), formally we get,[

˙̃z1
˙̃z2

]
=

[
Ã11 Ã12

Ã21 Ã22

] [
z̃1
z̃2

]
+

[
B̃1

B̃2

]
u+

[
b̃1

b̃2

]

y = ℜ
([

C̃1 C̃2

] [
z̃1
z̃2

]
+ c̃

)
,

(6)

MOR literature from control theory suggests two different
methods for approximating the reduced order system based
on the balanced realization, Direct Truncation (DT) [20] and
Singular Pertubation (SP) [21].

Using DT we approximate the system by
ÃT = Ã11 ∈ CR×R, B̃T = B̃1 ∈ CR×Y, b̃T = b̃1 ∈ CR

C̃T = C̃1 ∈ CO×R and c̃T = c̃ ∈ CO. While DT is a good
approximation for the balanced system in the high-frequency
domain, it may suffer in correctly reflecting the steady state
behavior. To better match the low-frequency domain we can
apply the SP approximation [21]. For SP we consider the
dynamics of z̃2 fast and stable, which can be approximated by
setting ˙̃z2 = 0. Calculating the resulting z̃2, and reinserting
into the equation of ˙̃z1, allows to reformulate the SP based
reduced order S-Edge layers dynamics by,

˙̃z1 = ÃTz̃1 + B̃Tu+ b̃T

y = ℜ(C̃Tz̃1 + D̃Tu+ c̃T),
(7)

where

ÃT=Ã11 − Ã12Ã
−1

22 Ã21, B̃T=B̃1 − Ã12Ã
−1

22 B̃2

b̃T= b̃1 − Ã12Ã
−1

22 b̃2, C̃T=C̃1 − C̃2Ã
−1

22 Ã21

c̃T= c̃− C̃2Ã
−1

22 b̃2, D̃T=−C̃2Ã
−1

22 B̃2.

(8)

We see that the SP approximation, adds a Feed-Trough term
D̃T to the reduced-order parametrization. S-Edge by default
neglects this term for parameter efficiency. We either have to
add this additional Feed-Trough Matrix to the representation,
which adds additional parameters or we neglect it.

Since the balancing transform results in a non-diagonal
form, we have to rediagonalize the truncated system
(ÃT, B̃T, b̃T, C̃T, c̃T), with its diagonalization transform
TD (see Sec. II-B how to derive) to get the final diagonal
reduced order model parameters (λ̃R, B̃R, b̃R, C̃R, c̃R) fitting
the diagonal SSM framework. The time-scale parameter is set
to ∆R = 1 to match the original discrete dynamics.

B. Model Pruning Algorithm

Given a trained S-Edge model with L layers, we ask
ourselves the following question: How strong are we able
to reduce the number of parameters and operations given a
global accuracy loss constraint δ?

The proposed iterative pruning strategy is depicted by
Algorithm 2. The per-layer accuracy loss constraint ϵl can
either be set in a naive way by assigning ϵl = δ/L, or
we weight the constraints by incorporating the information
about the number of states which may be eliminated based
on a layer-wise analysis (see Sec. V-A). Considering nl as

273



Algorithm 2: Pruning S-Edge Models given an accu-
racy loss constraint

Input: δ // Accuracy loss constraint
N // Number of iterations
Γ // Approximation method (DT or SP)

(Ãl:L, B̃l:L, b̃l:L, C̃l:L, c̃l:L) // S-Edge model parameters
Output: // Reduced model parameters

(λ̃R,l:L, B̃R,l:L, b̃R,l:L, C̃R,l:L, c̃R,l:L)
Rl:L = Hl:L // Init. red. orders with default values
Accd // Evaluate default accuracy
∆Alast = 0 // Init. last valid Acc. loss
for i = 1 to N do

δi = iδ/N // Update acc. constraint for iteration
ϵl:L = f(δi, L) // Update per layer acc. loss constr.
for l = 1 to L do

∆A = ∆Alast // Init with last valid acc. loss

Athresh. =
∑l

i=1 ϵi // Set new threshold
while ∆A < Athresh. do

∆Alast = ∆A // Remember last valid acc.
Rl = Rl − 1 // Reduce order
MOR(Rl:L, Γ) // Perform MOR reduction
Acc // Evaluate model accuracy
∆A = Accd −Acc // Compute accuracy loss

end
Rl = Rl + 1 // Restore last valid order

end
end

the number of prunable states not hurting the accuracy loss
constraint (see Tab. II for specific results) for an individual
layer l we perform a weighting ϵl =

nl∑L
l=1 nl

δ. If nl is equal
for the individual layers, the layerwise accuracy constraint ϵl
defaults to the naive way.

V. EXPERIMENTAL RESULTS

We evaluate the proposed MOR and pruning approach
using the Google Speech Command [11] dataset, sampled
with 16kHz and consisting of 35 classes. Specifically, we
focus on the raw autoregressive audio-waveform classification
task. We analyze five S-Edge model configurations spanning a
default range in parameters 141k–8k and accuracy 95%–90%
(see Tab. I–IV).

A. Layer-wise Model Order Reduction Effects

First, we analyze how strongly we are able to reduce
the order of individual layers and compare the effect of the
two proposed model order reduction approaches DT and SP.
We investigate each layer separately, by iteratively reducing
the order of a single layer while fixing the other layers to
their default order. Fig. 1 highlights the evolution of the test
accuracy over the per layer pruning ratios for three S-Edge
model configurations (Full, M, Tiny) when approximating with

TABLE I
S-EDGE MODEL CONFIGURATIONS.

Input dim. (Y) Output dim. (O) State dim. (H) Param. Flops
Full [1, 96, 96, 96, 96, 96] [96, 96, 96, 96, 96, 96] [64, 64, 64, 64, 64, 64] 141k 4400M
L [1, 24, 32, 40, 48, 56] [24, 32, 40, 48, 56, 64] [96, 80, 64, 48, 32, 16] 56k 1715M
M [1, 24, 44] [24, 44, 64] [96, 64, 32] 28k 805M
S [1, 8, 16, 32, 42, 54] [8, 16, 32, 42, 54, 64] [32, 24, 16, 14, 12, 8] 20k 567M
Tiny [1, 8, 32] [8, 32, 64] [32,16,8] 8k 192M

0 20 40 60 80 100

0.90

0.95

0.85

0.80

Te
st

 A
cc

ur
ac

y

S-Edge-Full
Layer1 Layer2 Layer3 Layer4 Layer5 Layer6

0 20 40 60 80 100
Per Layer Pruning Ratio [%]

S-Edge-M

0 20 40 60 80 100

S-Edge-Tiny

Fig. 1. Layerwise pruning effects when iteratively reducing the model order
of a single layer and fixing the other layers to their default order for S-Edge
models (based on SP approximation).

TABLE II
LAYER-WISE PRUNING RESULTS FOR ACCURACY LOSS CONSTRAINTS δ.

δ Number of eliminated states nl per Layer l
[pp] using either DT/SP

l=1 l=2 l=3 l=4 l=5 l=6 Sum

Full 1 53/60 52/50 36/37 27/37 42/42 39/36 249/262
Full 2 59/62 53/50 45/44 35/41 47/49 43/45 282/291
L 1 82/80 63/64 38/35 22/24 12/12 2/3 219/218
L 2 84/86 69/68 43/41 24/24 14/15 3/4 237/238
M 1 37/73 30/28 10/10 - - - 77/111
M 2 50/77 35/36 12/10 - - - 97/123
S 1 17/25 8/10 4/6 2/2 1/1 0/0 32/44
S 2 21/29 10/12 7/13 3/4 1/1 0/0 42/59
Tiny 1 14/24 0/1 0/0 - - - 14/25
Tiny 2 14/25 1/2 0/0 - - - 15/27

SP. This illustration shows that individual layers can be pruned
more or less. Tab. II provides additional results evaluating the
number of states that we were able to eliminate given two
different accuracy loss constraints. Comparing the number of
prunable states based on the two approximation approaches
(DT or SP) shows that we are able to eliminate more states
when approximating with SP (indicated by the fictive sum
over all layers). Even though we decided to neglect the Feed-
Trough term D̃T for keeping parameter reduction as high as
possible.

B. Model Pruning Results

We evaluate the proposed pruning algorithm for five S-Edge
model configurations (Full, L, M, S, Tiny) and analyze the
reached reduction in parameters and operations with an ac-
curacy loss constraint of δ = 2.0pp. Setting the number of
iterations to N = 4 allows a drop in accuracy per iteration
of 0.5pp. Our approach allows to choose between the two
approximation methods (either DT or SP), and the way we
set the per-layer accuracy loss thresholds ϵl (either naive

0 10 20 30 40 50
Parameter Reduction [%]

0.88

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y

S-Edge-Full S-Edge-L S-Edge-M S-Edge-S S-Edge-Tiny

25k 50k 75k 100k 125k
Parameters

Fig. 2. Pruning evolution given a accuracy loss constraint of δ = 2pp and
splitting the search into four iterations N = 4. Results are based on using SP
approximation and weighted per-layer accuracy loss thresholds.

274



TABLE III
MODEL PRUNING RESULTS FOR S-EDGE MODELS WHILE MAINTAINING

AN ACCURACY LOSS LOWER 0.5pp.

Parameter red. ∆P[%], Flops red. ∆F[%]
Per layer Acc. thresholds

S-Edge Default MOR Weighted Naive
Acc.[%] ∆P ∆F ∆P ∆F

Full 94.9 SP 36.1 37.1 29.8 30.6
L 93.3 SP 28.2 29.6 28.0 29.4
M 92.0 SP 19.7 21.6 22.9 25.1
S 92.4 SP 4.5 5.2 5.4 6.2
Tiny 90.0 SP 5.8 8.1 5.8 8.1
Full 94.9 DT 32.0 32.9 32.3 33.3
L 93.3 DT 23.5 24.7 27.1 28.5
M 92.0 DT 21.9 24.0 22.4 24.6
S 92.4 DT 3.4 3.9 4.8 5.5
Tiny 90.0 DT 3.1 4.4 3.1 4.4

TABLE IV
MODEL PRUNING RESULTS FOR S-EDGE MODELS WHILE MAINTAINING

AN ACCURACY LOSS LOWER 2pp.

Parameter red. ∆P[%], Flops red. ∆F[%]
Per layer Acc. thresholds

S-Edge Default MOR Weighted Naive
Acc.[%] ∆P ∆F ∆P ∆F

Full 94.9 SP 49.5 50.9 45.1 46.6
L 93.3 SP 37.4 39.3 33.0 34.7
M 92.1 SP 30.3 33.3 26.5 29.2
S 92.4 SP 9.2 10.5 7.1 8.1
Tiny 90.0 SP 6.5 9.2 7.0 9.8
Full 94.9 DT 44.9 46.1 43.5 44.7
L 93.3 DT 36.6 38.4 31.8 33.4
M 92.1 DT 30.9 34.0 27.1 29.8
S 92.4 DT 6.3 7.3 6.5 7.4
Tiny 90.0 DT 4.4 6.2 4.4 6.2

or weighted). Fig. 2 shows the evolution of the parameter
reduction during the iterative pruning algorithm for all S-Edge
configurations when applying SP approximation and weighted
per layer accuracy loss thresholds.

Tab. III and IV shows the reached reduction in parameters
and operations not hurting a 0.5pp and 2pp accuracy drop. We
find that using SP during model order reduction performs bet-
ter in most cases. Combined with weighted per-layer accuracy
loss constraints we achieve the highest reduction in parameters
for the two largest models (Full and L).

VI. CONCLUSION

We show that pruning complex-valued diagonal MIMO
SSM layers in the continuous-time domain works through bal-
ancing, truncation, and rediagonalization. Balancing the sys-
tem sorts states by input/output importance, without a loss in
accuracy or computational overhead. Motivated by control the-
ory, we removed weakly influential dynamics and validated the
assumption that iterative state truncation gradually decreases
prediction accuracy. Using weighted per-layer accuracy loss
thresholds improved the iterative pruning strategy going from
29.8% (naive) to 36.1% (weighted) parameter reduction for
the largest model with an accuracy drop smaller 0.5pp. While
we encourage further research in model pruning algorithms,
we demonstrate its applicability to SSM configurations ranging
from 141k to 8k parameters and reach parameter reductions of
49.5% for the largest model and 7.0% for the smallest model
not hurting a 2pp accuracy loss constraint.

REFERENCES

[1] K. Cho, B. v. Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: encoder–decoder approaches,”
Proceedings Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation, 2014.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[3] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den Oord, A. Graves,
and K. Kavukcuoglu, “Neural machine translation in linear time,” CoRR,
vol. abs/1610.10099, 2016.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 6000–6010.

[5] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with
structured state spaces,” in The International Conference on Learning
Representations, 2022.

[6] A. Gu, A. Gupta, K. Goel, and C. Ré, “On the parameterization and
initialization of diagonal state space models,” in Proceedings of the 36th
International Conference on Neural Information Processing Systems, ser.
NIPS ’22. Red Hook, NY, USA: Curran Associates Inc., 2024.

[7] A. Gupta, A. Gu, and J. Berant, “Diagonal state spaces are as effective
as structured state spaces,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems, ser. NIPS ’22.
Red Hook, NY, USA: Curran Associates Inc., 2024.

[8] J. T. Smith, A. Warrington, and S. Linderman, “Simplified state space
layers for sequence modeling,” in The Eleventh International Conference
on Learning Representations, 2023.

[9] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu,
and S. De, “Resurrecting recurrent neural networks for long sequences,”
in Proceedings of the 40th International Conference on Machine Learn-
ing, ser. ICML’23, 2023.

[10] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao,
L. Yang, S. Ruder, and D. Metzler, “Long range arena : A benchmark
for efficient transformers,” in International Conference on Learning
Representations, 2021.

[11] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” 2018.

[12] A. Gu, I. Johnson, A. Timalsina, A. Rudra, and C. Re, “How to train
your HIPPO: State space models with generalized orthogonal basis
projections,” in International Conference on Learning Representations,
2023.

[13] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cambridge
University Press, 2019.

[14] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.
USA: Society for Industrial and Applied Mathematics, 2005.

[15] M. Forgione, M. Mejari, and D. Piga, “Model order reduction of deep
structured state-space models: A system-theoretic approach,” CoRR, vol.
abs/2403.14833, 2024.

[16] H. Ezoe and K. Sato, “Model compression method for S4 with diagonal
state space layers using balanced truncation,” IEEE Access, vol. 12, pp.
116 415–116 427, 2024.

[17] M. Gwak, S. Moon, J. Ko, and P. Park, “Layer-adaptive state pruning
for deep state space models,” in The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

[18] M. Bittner, D. Schnöll, M. Wess, and A. Jantsch, “Efficient and
interpretable raw audio classification with diagonal state space models,”
Machine Learning, vol. 114, no. 8, p. 175, Jun 2025. [Online].
Available: https://doi.org/10.1007/s10994-025-06807-z

[19] F. Bonassi, C. Andersson, P. Mattsson, and T. B. Schön, “Struc-
tured state-space models are deep wiener models,” IFAC-PapersOnLine,
vol. 58, no. 15, pp. 247–252, 2024, iFAC Symposium on System
Identification SYSID 2024.

[20] B. Moore, “Principal component analysis in linear systems: Control-
lability, observability, and model reduction,” IEEE Transactions on
Automatic Control, vol. 26, no. 1, pp. 17–32, 1981.

[21] Y. Liu and B. Anderson, “Singular perturbation approximation of
balanced systems,” in Proceedings of the 28th IEEE Conference on
Decision and Control,, 1989, pp. 1355–1360 vol.2.

275


