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Abstract—A typical way to label datasets for Deep Neural
Network (DNN) training and testing is through crowdsourcing.
However, there is no assurance that crowd workers will adhere
to the data labeling criteria, refrain from introducing personal
bias, or from spamming random labels. In order to address this
issue, we propose a graph-based technique to assess annotator
trustworthiness and adjust their involvement in the labeling
process. Our proposed method not only improves data labels
accuracy, by considering the agreement between annotators and
ranking them based on their labeling trustworthiness, but also
aims to enhance DNN inference performance by providing more
accurate training data labels. We examine the constraints of
conventional multi-annotation label aggregation techniques and
compare them to our approach. Lastly, we demonstrate that our
proposed method remains robust to artificially injected noisy
annotations, surpassing the performance of previous state-of-
the-Art (sotA) work. The effectiveness of the proposed method
is validated on an intrinsically subjective task, namely text
sentiment analysis.

I. INTRODUCTION AND RELATED WORK

Data label accuracy is important in Natural Language Pro-
cessing (NLP) and supervised Machine Learning (ML) appli-
cations. Valid text data class labels are essential for training
effective Deep Neural Network (DNN) models in a range of
ML or NLP tasks, including text sentiment analysis, entity
recognition, and text categorization [1]. High-quality labeled
DNN training data ensure better-performing DNN models, as
supervised learning relies heavily on training data quality [2],
[3]. Traditionally, human annotators either provide accurate
data labels or ensure label correctness, when labels have been
obtained otherwise, such as using automated ML methods.
However, in subjective text analysis tasks, such as fine-grained
text sentiment analysis, even honest human annotators output
can provide inaccurate or ambiguous text labels [4]. This is
evident in many cases of multi-annotator text datasets, where
labels of each single text entry have been produced by multiple
annotators. In such cases, the implementation of robust label
aggregation techniques can provide reliable ground-truth data
labels.

Various approaches have been suggested to address the
issue of combining data labels from multiple annotators, each
offering different advantages and drawbacks:

Simple Majority Voting (SMV) is a widely used approach
where the final aggregated label is the one that received the
most annotator votes [5]. While simple and practical, SMV
treats all annotators uniformly, without taking into account
their trustworthiness. This could lead to biased results, i.e.,
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when some annotators provide, deliberately or not, false data
labels.

Weighted Majority Voting (WMYV) attempts to mitigate
SMV limitations by assigning equal initial weights to all
data annotators that are subsequently updated based on their
overall consensus with the majority derived labels [6]. WMV
does not consider the pairwise agreement between annotators,
hence missing patterns of noisy annotation behaviors that do
not deviate from the majority, but negatively impact both the
annotated label quality and DNN training results.

Dawid-Skene model is a probabilistic approach that esti-
mates true labels and error rates of annotator labeling using
the Expectation-Maximization (EM) algorithm [7]. This model
assumes that annotators have different levels of labeling ex-
pertise and can make systematic labeling errors. By modeling
these errors, the Dawid-Skene model can provide more accu-
rate label estimates compared to majority voting.

Bayesian methods extend the Dawid-Skene model by in-
corporating previous knowledge regarding the data labels.
Bayesian inference is used to constantly update the accurate
label probability estimation as further data are collected [8].
Bayesian methods can manage uncertainty and integrate previ-
ous information, making them useful tools for label cleaning.

Multi-Annotator Comptence Estimation (MACE) is a gener-
ative model designed to estimate both the true data labels and
annotator trustworthiness in multi-annotator data scenarios [9].
MACE assumes that each annotator either correctly identifies
the true label or produces a label at random, when spamming.
It improves the data label quality by allocating more weight
to trustworthy annotators.

DNN Crowd Layer (CL) can be used to integrate multi-
annotator modeling directly in the DNN architecture, allowing
for an end-to-end DNN training while accounting for annotator
biases and reliabilities [10]. This method assumes the use of
a primary DNN (e.g. a Convolution Neural Network) com-
plemented by the CL that comprises of different parameters
to weight the labels provided by each annotator. These CL
parameters are updated during DNN CL training towards
identifying the trend of each annotator. CL produces multiple
outputs, one for each annotator. Each of the outputs predicts
how a specific annotator would label the data input.

Multi-Annotator Loss Modeling [11] uses multi-task learn-
ing [12] and DNN training loss-based label correction [13] to
improve DNN prediction accuracy and remain robust to label
noise. Multi-Annotator Loss Modeling effectively separates
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agreeing and disagreeing label annotations to improve DNN
prediction performance in various annotation settings.

A comprehensive review of learning methods from crowd-
sourced noisy labels is presented in [14].

Although the above mentioned methods have improved
DNN training on multi-annotator noisy datasets, there are still
obstacles to achieve a high level of agreement among anno-
tators and create accurate labels, especially in tasks involving
subjective label assessments.

To overcome them, we suggest a novel graph-based method
for annotator ranking based on their trustworthiness. To
this end, an Annotator Agreement Graph (AAG) is created,
whose nodes represent annotators. AAG edge weights rep-
resent the level of agreement of an annotator pair during
the label process. Using AAG, we can determine annotator
trustworthiness. Thus, Labeling Agreement Score (LAS) can
be assigned to each annotator. Then, LAS is utilized in
a weighted Trustworthy-Majority Voting (TMV) scheme to
aggregate multi-annotator labels.

This novel TMV method proposed in this paper advances
the state-of-the-art by reinforcing existing approaches and
emphasizing the trustworthiness of individual annotators and
the accuracy of their annotations. This approach is particularly
valuable in tasks involving subjective label assessments, where
achieving a high level of agreement among annotators has
traditionally been challenging.

The structure of this paper is as follows: Section II presents
the TMV methodology. Experimental results are presented in
Section IIT and conclusions are drawn in Section IV.

II. TMV METHODOLOGY

The proposed TMV method utilizes the label agreement
among annotators to calculate their trustworthiness and gener-
ate accurate aggregated labels for DNN training . Our graph-
based annotator ranking system consists of three steps: a)
construction of an Annotator Agreement Graph, b) calculation
of a Label Aggregation Score for each annotator, c) the
Trustworthy Majority Voting Scheme.

Consider a DNN training dataset comprising N data sample
vectors X = {x1,X2,...,Xx}. In the case of NLP, each
column vector x,, n = 1,..., N represents a text entry,
e.g. one tweet. These samples are annotated by a set of M
annotators, denoted as A = { Ay, Aa, ..., A, }. Each text label
corresponds to one of L classes labels C = {c;,¢2,...,cr},
corresponding, for instance, to text sentiments. Each sample
X, is annotated by a subset S, of at most M annotators
1 < |S,| < M. Annotator A,,, m =1,..., M can provide a
label y,,, € C for a sample x,,.

The Annotator Agreement Graph (AAG), G = {V,£} is
constructed as follows: Its node set }V comprises the annotators
(V| = M). The AAG edge set £ contains entries that connect
annotator pairs. An edge (m,m’) is formed between annota-
tors A,, and A, if they have annotated at least a minimum
number of 7' common data samples. This parameter threshold
T requires fine-tuning for each different DNN training dataset.
The weight w,,,,,, of each edge (m, m’) is equal to the Cohen

Kappa Score [15] between the two annotators, which quantifies
the level of agreement between annotators on a set of jointly
annotated text samples.

Once the AAG graph is constructed, for each annotator A,,,
an average Label Agreement Score (LAS) a,, is calculated as
follows:

Zm’ ENp, Wmm/
Nl

where N,,, denotes the AAG neighbor set of annotator A,,.
LAS values are normalized to a], € [0,1], where values
closer to 1 or O represent high or low annotator agreement,
respectively. Normalized LAS values a, can be used to
rank annotator A,,, trustworthiness in descending order. They
can also be used to perform a weighted voting data label
aggregation. For each data entry x, and for each label ¢,
we calculate the Weighted Aggregated Score (WAS) L,,; of all
annotators A4,, € S,:

Loi= ) ap 6)

A unique label ¢;; € C is then assigned for each data entry x,,
if there exists an L,;; such that:

(1)

Ay =

L,
Loy > 71 V£ 3)

Therefore, the most trustworthy class label ¢;/ is assigned to
data entry x,, if the total W AS score for that label exceeds half
of the sum of the normalized LAS a), values for every label
assigned by all A,, € §,, annotators, other than ¢;.. If there
is no such class label that fullfils criterion (3) the data entry
X, is discarded. This rule ensures that the assigned label has
strong support from reliable annotators and results in a unique
label per data sample.

III. TMV EXPERIMENTAL PERFORMANCE EVALUATION

The NetworkX [16] Python library was used to construct
the AGG graph.

To demonstrate the efficiency of the TMV method, we
worked on text sentiment recognition. As human text senti-
ment labeling can be quite subjective, multiple human an-
notators were used to tag text with sentiment labels for
DNN training and testing. The GoEmotions text dataset [17]
comprising of N = 58,000 Reddit comments was annotated
with 27 sentiments and a neutral emotion class label, totalling
L = 28 class labels. Each text sample has been labeled by
three upto five out of M = 82 unique annotators. A number
of DNN training and testing experiments have been performed
on this dataset for text sentiment recognition.

A. Experiments without label noise addition

GoEmotions labels, as a crowdsourced dataset, are intrinsi-
cally noisy, since text sentiment labeling is an inherently sub-
jective task. The first experiment was to train a text sentiment
recognition DNN using the proposed TMV label aggregation
and compare its performance versus the one obtained using
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majority voting for training dataset labeling. Figure 1 depicts
the AAG graph of 82 annotators produced by applying our
TMV method on the GoEmotions dataset using threshold
T = 92. While some annotators agree with each other (high
LAS), others deviate from the majority (low LAS), essentially
being outliers. For sentiment recognition, a RoBERTa [18]
model was fine-tuned using the aggregated labels produced
by the proposed TMV method and was compared against
a baseline RoOBERTa model that was fine-tuned using labels
produced by simple majority voting. The text samples from the
GoEmotions dataset were preprocessed following the approach
of [19]. All experiments utilized the Transformers library [20].

Fig. 1. AAG visualization for the 82 annotators that labeled the GoEmotions
dataset.

To ensure a fair comparison with previous work, we initially
refrained from applying our method to the test and validation
splits of the GoEmotions dataset. In this configuration, our
weighted label aggregation method was applied exclusively on
the training dataset, resulting in a new training ground truth
that was then used to train the RoOBERTa sentiment classifier.
Additionally, we also explored a second configuration where
the proposed T'MV method was applied to both the training
and test datasets, allowing us to evaluate the model perfor-
mance under conditions where both datasets were refined
through the label aggregation process.

The DNN performance results on the test set, for both
the aforementioned configurations are listed in Table 1. F1-
macro-weighted results are presented, as classification preci-
sion, recall, and accuracy can be misleading in multi-label
classification tasks, especially in imbalanced datasets, such as
GoEmotions. The results clearly show that RoOBERTa classifier
trained on our TMV aggregated labels greatly outperform
those trained using simple majority voting across all text
sentiment classes. Overall, the proposed method shows an
approximate increase of 16.7% in the average F1-macro scores
across all 28 classes, compared to the majority voting method
for the GoEmotions dataset. It must be noted that the use of
TMYV on both the training and test data label aggregation is

TABLE I
F1-MACRO COMPARISON BETWEEN TMV APPLIED EXCLUSIVELY ON A)
THE TRAINING DATASET (TMV ON TRAIN LABELS), B) TMV APPLIED ON
BOTH TRAINING AND TEST DATASETS (TMV ON TRAIN/TEST LABEL), C)
AND MAJORITY VOTING (SMV).

Label TMV on TMYV on SMYV on Difference
Training Train- Train- (a)-(c)
Labels (a) ing/Test ing/Test
Labels (b) Labels (c)

Admiration 80.34% 73.97% 70.80% +9.54%
Amusement 86.48% 72.90% 83.20% +3.28%
Anger 73.86% 69.61% 51.70% +22.16%
Annoyance 60.26% 59.86% 34.90% +25.36%
Approval 62.76 % 60.05% 43.70% +19.06%
Caring 59.40% 56.73% 40.50% +18.90%
Confusion 67.29% 63.95% 47.00% +20.29%
Curiosity 68.19% 65.04% 56.80% +11.39%
Desire 64.55% 69.32% 52.40% +12.15%
Disappointment 64.23% 60.78% 39.00% +25.23%
Disapproval 60.64 % 58.21% 43.90% +16.74%
Disgust 71.02% 68.47% 49.10% +21.92%
Embarrassment 71.84% 63.84% 50.70% +21.14%
Excitement 69.00% 60.46% 45.50% +23.50%
Fear 84.30% 69.03% 68.90% +15.40%
Gratitude 95.83% 88.35% 92.20% +3.63%
Grief 49.98% 49.95% 33.30% +16.68%
Joy 78.06 % 70.05% 63.40% +14.66%
Love 89.43% 81.30% 81.20% +8.23%
Nervousness 59.25% 60.24% 43.20% +16.05%
Optimism 77.01% 70.93% 57.20% +19.81%
Pride 85.27% 60.11% 58.30% +26.97%
Realization 60.69 % 55.15% 26.60% +34.09%
Relief 49.96% 58.44% 24.60% +25.36%
Remorse 75.51% 73.69% 68.80% +6.71%
Sadness 73.00% 67.85% 59.10% +13.90%
Surprise 73.05% 69.69% 60.10% +12.95%
Neutral 72.97% 66.80% 68.80% +4.17%
Average 70.86% 66.07% 54.10% 16.76%

inferior to its use only on aggregating the training data set
labels.

Furthermore, it is evident that our method yields substantial
improvements in Fl-macro scores across a wide range of
sentiment classes. For instance, some sentiment classes such
as Annoyance, Disappointment, Realization, and Relief exhibit
Fl-macro increases that are greater than 25%. This manifests
that our method is particularly effective in enhancing the
recognition of more challenging or ambiguous sentiments. On
the other hand, certain classes such as Neutral, Gratitude,
and Amusement did not show a significant text sentiment
analysis performance increase. This fact confirms that these
text sentiment classes are inherently easier to classify. Hence
simple majority voting is already relatively effective for cre-
ating annotator consensus on these labels.

Table II lists the balanced accuracy of loss-modeling method
[11] and our proposed TMV method, when applied directly to
the class labels of the GoEmotion dataset. We observe that
our TMV approach surpasses previous state-of-the-Art (sotA)
in all six Ekman sentiments [21] with an average increase of

7%.

B. Excessive Label Corruption Experiment

The label corruption experiment aims to evaluate the robust-
ness and credibility of the proposed TMV method. We inject
label corruption to a py ratio of the original unaggregated
data labels, where py € [0,1], resulting in K¢ = pyN
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TABLE II
BALANCED SENTIMENT CLASSIFICATION ACCURACY COMPARISON OF
TMYV COMPARED TO LOSS-MODELING METHOD

Sentiment Class | TMV | Loss-Modeling | % Increase
Anger 70% 67% 4.4%
Disgust 68 % 65% 4.6%
Fear 73% 70% 4.2%
Joy 76 % 67% 13.4%
Sadness 72% 68% 5.8%
Surprise 76 % 69% 10.1%

randomly selected text samples. For each corrupted sample
xg, k=1,..., K. we randomly select a fraction f € [0,1] of
all yi,, labels to be altered.

To simulate excessive label noise, we selected a value
of py equal to 0.5 of the total GoEmotions samples and
allocated new labels to each class for f = 0.5. Since the
GoEmotions dataset comprises of 28 classes, this results in a
heavily corrupted label set for each text sample containing up
to 14 wrong sentiment labels (f = 0.5) This simulated noise
injection is applied exclusively on the training GoEmotions
dataset. Next, we aggregated the labels with TMV and SMV
methods. We trained two separate RoBERTa [18] classifiers
trained on TMV and SMV aggregated labels to evaluate the
effectiveness of the proposed method under conditions of such
an excessive label noise. Table III illustrates the average text
sentiment recognition performance metrics for both scenarios.

TABLE III
COMPARISON OF TEST SET RESULTS BETWEEN 50% CORRUPTED LABELS
(SMV) AND CORRECTED CORRUPTED LABELS WITH TMV .

Metric SMV(a) | TMV(b) (b)-(a)
Average Precision 3.16% 3.89% +0.73%
Average Recall - 11.83% +11.83%
Average Fl-macro 2.89% 48.61% +45.72%
Average F1-micro 3.16% 88.87% +85.71%
Average Accuracy 3.16% 88.87 % +85.71%

We observe that the RoOBERTa model using SMV training
label aggregation collapses under intense data corruption, as
all sentiment classification metrics are at 3% level indicating
extremely low SMV+DNN model performance. The proposed
TMYV method offers a great improvement compared to SMV.
For example, its F1-macro performance metric exeeds the one
of SMV 45.7%. Additionally, text sentiment recall and accu-
racy increased by 11.83% and 85.71% respectively, indicating
that using the proposed TMV method demonstrates robustness
under severe label noise.

C. Malicious Annotator Detection

To evaluate the efficiency of our method in identifying
malicious or noisy annotators, we conducted two experiments:
a) one to evaluate whether our proposed method identifies
artificially injected malicious annotations and b) another one

to evaluate the corruption intensity required to deem a trust-
worthy annotator as malicious or noisy one.

1) Artificial Malicious Annotator Detection: Our first ex-
periment is designed to evaluate the effectiveness of our
method in identifying malicious or noisy annotators. The
experiment consists of the following two steps:

Inject an artificial new noisy annotator in the labeled
dataset. As we already have 82 annotators (labeled 1-82), the
new annotator ID is set to 83. This annotator allocates random
labels to 10%, 15%, and 25% of the entire GoEmotions
dataset. This simulates the behavior of an annotator who does
not follow any consistent labeling pattern or exhibits malicious
intent.

Find the annotator rankings and the new weighted aggre-
gated labels. In all three corruption levels, our TMV method
detected this annotator as noisy or malicious and assigned
its normalized LAS score a), to zero. Figure 2 depicts the
normalized LAS values a!,, of each annotator (having ID label
1-83) that satisfy the threshold of 7' = 92 commonly annotated
texts as the annotator with ID 83 having a a/,, value equal to
0.

Ranking

~~~~~~~~ R R R R EE R Y I I AN A I P R
Annotator

Fig. 2. Normalized LAS values, a},,,m = 1,---,82 including a simulated
malicious annotator at 15% label corruption level.

2) Existing Annotator Corruption: We selected an annota-
tor with near-perfect rating (Annotator ID = 20, illustrated in
Figure 2), whose normalized LAS value a},, m = 20 is close
to 1. Then we randomly corrupted some of its labels, gradually
increasing the label corruption frequency from 5% up to
90% with increments of 5%. The purpose of this experiment
is to determine the level of label corruption that destroys
the annotator trustworthiness, by significantly lowering its
normalized LAS value a! .

Figure 3 shows how the annotator normalized LAS value
al,, decreases, as the label corruption percentage increases. We
note its LAS value becomes zero at a 35% label corruption
percentage. At this breakpoint, our TMV aggregation method
disregards this annotator as a completely noisy/unstrusted one.
It is important to note that the annotator normalized LAS
value a!, declines below the 0.1 level at a 25% label corruption
frequency , much earlier than the aforementioned breakpoint
of 35% corruption, resulting in a minimal contribution of
this annotator during TMV label aggregation. On the positive
side, label corruption levels up to 5% do not significantly
impact the normalized LAS values a!,, and, hence, annotator
trustworthiness.
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Fig. 3. Annotator normalized LAS value decrease versus label corruption
frequency (%).

IV. CONCLUSIONS

In this work, we developed a method for label aggrega-
tion in multi-annotator datasets, specifically applied to the
intrinsically subjective task of text sentiment classification.
We demonstrated that our novel TMV aggregation method
based on annotator trustworthiness outperforms SMV and
Loss-Modeling ones, when used in text label aggregation for
DNN-based text sentiment classification, it was proven that
it effectively identifies added noisy or malicious annotators.
To test the robustness of our method, we introduced varying
levels of label corruption to an existing trustworthy annota-
tor, creating a mix of high and low-quality text sentiment
annotations. The proposed method successfully decreased the
trustworthiness of the corrupted annotator, thereby reducing
its final contribution in the labeling aggregation process of the
training text data.

Furthermore, we evaluated our approach under conditions
of excessive label-level corruption, altering up to 50% of the
total annotations. ROBERTa models that were fine-tuned using
our aggregation technique demonstrated superior performance
across all evaluation metrics.

Looking forward, our proposed TMV method can be ex-
panded for applications beyond text sentiment classification,
to scenarios where annotations are subjective or prone to
inconsistency, for instance in medical image segmentation or
audiovisual sentiment detection.
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