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Abstract—Integrating audio and visual data for training
multimodal foundational models remains a challenge. The Audio-
Video Vector Alignment (AVVA) framework addresses this by
considering AV scene alignment beyond mere temporal synchro-
nization, and leveraging Large Language Models (LLMs) for data
curation. AVVA implements a scoring mechanism for selecting
aligned training data segments. It integrates Whisper, a speech-
based foundation model, for audio and DINOv2 for video analysis
in a dual-encoder structure with contrastive learning on AV pairs.
Evaluations on AudioCaps, VALOR, and VGGSound demonstrate
the effectiveness of the proposed model architecture and data
curation approach. AVVA achieves a significant improvement
in top-k accuracies for video-to-audio retrieval on all datasets
compared to DenseAV, while using only 192 hrs of curated
training data. Furthermore, an ablation study indicates that
the data curation process effectively trades data quality for
data quantity, yielding increases in top-k retrieval accuracies
on AudioCaps, VALOR, and VGGSound, compared to training
on the full spectrum of uncurated data.

Index Terms—Audio-Video Vector Alignment (AVVA), Multi-
modal Learning, Audio-Visual Retrieval, Scene Understanding

I. INTRODUCTION AND MOTIVATION

Humans naturally process audiovisual information without
any need for textual mediation. For instance, when watching a
video, we instinctively merge visual cues with corresponding
sounds to create a cohesive understanding of the scene.
However, most current multimodal AI systems, like CLIP [1]
and CLAP [2], and majority of other models [3]–[9], depend
on textual captions to connect visual and auditory features.
This reliance on text-based alignment is at odds with how
humans integrate sensory information, where no explicit textual
representation is required.

Replicating this human-like processing in AI is challeng-
ing [14]–[16]. Existing multimodal models primarily handle
individual modalities separately, later merging them based on
text-based associations [17]–[26]. This approach, evident in
models like Wav2CLIP [5], AudioCLIP [6] and ImageBind [7],
misses the opportunity to exploit the natural synchronization
between audio and visual data. While efforts like AV-HuBERT
[27] and DenseAV [28] aim to capture linguistic information
along with the location of sounds from raw audiovisual pairs,
they still rely on speech-image pairs for training, which may
restrict their generalization.

∗ Work completed during an internship at Microsoft Research, Redmond,
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Fig. 1: Overview of the proposed audiovisual alignment
approach. (a) Our method’s data curation stage uses multimodal
reasoning to retain only highly aligned data. It uses LLaVA-
Next-Video [10], [11] for video reasoning, LTU-AS [12] for
audio processing, and Mistral [13] for alignment scoring. (b)
AVVA employs Whisper (audio), DINOv2 (video backbone),
without the need for textual mediation during training.

To address this gap, we introduce AVVA: Audio-Video
Vector Alignment, a framework designed to directly align
AV information without any text dependency. The proposed
model leverages Whisper [29] for audio processing and
DINOv2 [30] for visual understanding. This makes AVVA
particularly effective in applications requiring concurrent, text-
free audiovisual comprehension, such as video analysis and
human-computer interaction. An important data curation stage
takes place first, which itself relies on a text-, audio- and
video-LLMs.

Our contributions are threefold: (1) AVVA is the first audio-
visual foundation model that incorporates a speech foundation
model to enable generalized audiovisual representation learning.
(2) Unlike previous approaches that often align audio and visual
features independently, AVVA introduces a mechanism for joint
multimodal reasoning. (3) Our novel data curation mechanism
significantly reduces the amount of required training data while
still achieving competitive results with state-of-the-art models,
which further demonstrates the efficiency and effectiveness of
using curated data over the original datasets.

The remainder of the paper is organized as follows: Section
II explains our methodology, including data and model design.
Section III presents the experimental results, and Section IV
concludes the paper.

II. AVVA: AUDIO-VIDEO VECTOR ALIGNMENT

A key feature of the proposed method is the curation and se-
lection of high-quality paired data. AVVA leverages the synergy
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of three large models—two for multimodal inputs (audio and
video) and one for joint reasoning—to compute five alignment
scores. These scores will then be used to evaluate the coherence
of the audiovisual data. We will explain different parts of the
method. More details on the implementation and reproducibility
of AVVA, including prompts, statistics of datasets, and ablations
studies will be provided at https://github.com/AVVA-curation.

A. Multimodal Reasoning Engine (MRE)

The potential of most AI techniques for LLMs and mul-
timodal learning often hinges on the diversity and quality
of the data they interact with [31], [32]. In this work, we
curate the training data via the introduction of a Multimodal
Reasoning Engine (MRE), which is a set of prompts for
obtaining detailed reasoning of audio, video, and finally to
score the level of alignment between audio and video from
their textual descriptions, given a set of five metrics.

We used multiple audiovisual datasets that cover diverse
scenes from both egocentric and exocentric perspectives, and
various forms of audio, including natural, music, ambient, and
speech, and other complex scenarios. The datasets are: Epic-
Kitchens (1.37 hrs) [33], HowTo100M (7.77 hrs) [34], Music-
MIT (2.14 hrs) [35], VALOR (train/test 94.57/13.58 hrs) [36],
VGGSound (train/test 30.23/2.82 hrs) [37], AVE (10.00
hrs) [38], AudioSet (54.83 hrs) [39], AudioCaps (train/test
32.64/1.00 hrs) [40], HD-VILA-100M (51.45 hrs) [41]. All
input videos were segmented into 3-sec clips; for longer videos,
up to 20 random clips were kept. To achieve joint audio-speech
reasoning, each segment was processed using LLaVa-NeXT-
Video with LLaMA 3 [10], [11] for video reasoning and LTU-
AS [12] with LLaMA 2 for audio reasoning. We used Mistral
7B Instruct v0.3 for prompting and measuring alignment.

Given a video sample, we obtain one caption from LTU-AS
describing the audio, and one caption from LLaVA-Next-V
describing the video, see Fig. 2. The two captions are then fed
to Mistral, along with a prompt request to obtain five separate
scores in a scale of [0,10] that aim to capture caption alignment.
These scores come from the five metrics: Temporal Alignment,
Spatial Coherence, Contextual Relevance, Physical Causality,
and Sound Source Visibility. For Temporal Alignment, we
ask the system to assess how well the events described in
the audio caption match the timing of events in the video
caption (e.g., a clap sound syncing with hands meeting). Spatial
Coherence evaluates how well the audio description aligns
with the spatial layout and objects described in the video
(e.g., a car’s engine sound moving from left to right as it
passes). Contextual Relevance refers to how closely the subject
matter and theme of the audio align with those of the video
(e.g., kitchen sounds matching cooking activities). Physical
Causality assesses the extent to which the described sounds
can be logically attributed to the objects, actions, or events
depicted in the video (e.g., glass breaking sound matching the
visual shattering). Sound Source Visibility considers that some
visual objects may produce sound without being visible and
others may be visible but silent. The prompt details can be
found in the Appendix (see GitHub). These alignment scores

Fig. 2: The architecture of the MRE. The design integrates
outputs of an audio-LLM and a video-LLM into a Mistral LLM
to reason over audiovisual scene alignment by integrating 5
alignment scores that were calculated on the AV pairs.

are then averaged with equal weights, and a final alignment
score is produced, with the assumption that a higher score
represents better audiovisual alignment. A scoring threshold
is subsequently applied for final data curation. For reference,
retaining 90% or 70% of the original training data corresponded
to a score threshold of 6.2 and 7.6 respectively.

B. Model Architecture and Language-free Training

The AVVA model employs a bidirectional cross-modal
attention mechanism to integrate audio and video modalities
using dual encoders—Whisper for audio and DINOv2 for video.
We selected DINOv2 [30] over models like CLIP [1] due to
its ability to capture local visual features, which are crucial for
producing high-quality global representations through feature
pooling [28]. For the audio encoder, we utilize Whisper,
concatenating 32 layers while discarding the first layer, as
applied in [12]. The architecture is illustrated in Fig. 3.

The bidirectional attention mechanism, implemented with 8
attention heads and a 768-dimensional hidden state, ensures
a robust flow of information between the audio and video
streams, treating both modalities as equally important. This
design makes AVVA particularly effective for complex multi-
modal tasks requiring detailed audiovisual understanding, such
as synchronized multimedia content generation [42], event
detection [43], and other tasks requiring detailed audiovisual
analysis [44]. By aligning the features through learnable aligner
layers - implemented as MLPs with dimensions (input dim,
1024, 768) and layer normalization, ReLU , and dropout 0.2
between layers - and pooling the outputs, the model generates
compact embeddings suitable for contrastive learning.

We use the InfoNCE loss function [1] with a temperature
setting of 0.07 to help the model learn correlations between
audio and video features. For optimization, we adopt the
AdamW optimizer with a learning rate and weight decay set
to 10−4. To maintain computational efficiency and prevent
catastrophic forgetting, both the DINOv2 and Whisper encoders
are frozen [45] during training, focusing on training only the
alignment and cross-modal layers.
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Fig. 3: The AVVA model training. Audio (Whisper) and video
(DINOv2) encoders process raw inputs, which are aligned
via learnable parameters in aligner layers. A Bidirectional
Cross-Modal Attention helps capture the interaction between
audio and video features, which are pooled to generate final
embeddings for contrastive learning.

III. EXPERIMENTS

We conducted three sets of experiments to evaluate the
performance of our method in diverse scenarios.

A. Cross-modal Retrieval

In this experiment, we assess the ability of AVVA to retrieve
audio from video input and vice versa, across three datasets:
AudioCaps [40], VALOR [36], and VGG-Sound [37]. Each test
is performed on 3-second video segments containing embedded
audio, and we compare our model against Wav2CLIP [5],
DenseAV [28], Random weights, and ImageBind [7]. Each
retrieval test is evaluated K=100 times on N=100 random
audio/video files per iteration. No duplication occurs within
each set of 100 samples per run. Results are reported as
statistical averages.

AVVA achieves audio-to-video accuracy comparable to
DenseAV, with significantly improved video-to-audio accuracy,
despite using only 192 hrs of carefully curated data compared
to DenseAV’s 5,800 hrs, demonstrating a 30x improvement in
data efficiency. This showcases the effectiveness of high-quality,
curated audiovisual pairs curated by our system. Notably, all
competing methods in Table I were trained on larger datasets.
For instance, Wav2CLIP was trained on approximately 278
hrs of data. This comparison highlights the impact of effective
data curation on enhancing model performance. The results
for AVVA in Table I reflect an MRE threshold score of 7.6
out of 10, based on selecting the epoch with the minimum
validation los. A key observation from our experiments is
that increasing the amount of training data does not always
lead to better performance. While more data should generally
improve model accuracy initially, adding data can introduce
noise, particularly when the additional data is less curated
or includes irrelevant or misaligned audiovisual pairs. This
phenomenon is portrayed in our experiments, where models
trained on large but uncurated datasets such as Wav2CLIP and
DenseAV performed equivalent or worse than AVVA, especially
in V2A retrieval, despite having access to more data.

B. Data Curation Impact on Performance

This experiment evaluates the effect of data curation on
model performance in cross-modal retrieval tasks. As illustrated

in Fig. 4, higher curation thresholds lead to improved perfor-
mance. We argue that meaningful data curation reduces noise
in training data, allowing the model to focus on high-quality
examples, resulting in more accurate retrieval across modalities.
Similar plots were obtained for the other test sets and the video-
to-audio retrieval task. Despite being computationally expensive
- typically increasing preprocessing time by 6 seconds per
GPU time per segment - the improved data quality curation
enhances the model’s ability to generalize, which showcases
the importance of the data selection in multimodal training. The
findings are summarized in Table II, in terms of performance
improvement (%) as compared to training on full data . AVVA
achieves top-1 performance increases relative to original dataset
with same hrs of training across datasets for both audio-to-
video and video-to-audio tasks. For audio-to-video retrieval,
AVVA achieves increases of 18.0, 16.24, and 13.57 percentage
points (%) in top 1, 3, and 10 for AudioCaps; for VALOR,
increases of 22.67, 23.97, and 15.42 % respectively; and for
VGGSound, increases of 23.25, 15.79, and 10.44 % in top 1,
3, and 10. The proposed method also shows merit in the V2A
task, in this case more moderate improvements than for the
A2V task, shown in the second column of the Table.

TABLE II: Performance increases in cross-modal retrieval
tasks with data curation. Top-k = {1, 3, 10} % increase across
various datasets as compared to training on full original data.

Dataset Audio-to-Video ↑ (%) Video-to-Audio ↑ (%)
Top 1 Top 3 Top 10 Top 1 Top 3 Top 10

AudioCaps 18.0 16.24 13.57 11.08 11.29 14.71
VALOR 22.67 23.97 15.42 10.44 4.00 8.50
VGGSound 23.25 15.79 10.44 1.76 3.41 1.86

C. Temporal Alignment

To investigate the audio-video temporal alignment, we con-
ducted simulations where audio segments were systematically
shifted relative to their corresponding video segments across a
defined range of shifts from -3.0 to 3.0 sec, in increments of 0.4
sec. For each shift, cosine similarity between audio and video
embeddings was computed to assess the alignment quality. The
multimodal audiovisual embeddings were extracted using our
pre-trained model.

Figure 5 shows cosine similarity scores for the video and
audio embeddings of 200 samples across audio shifts. Mean
similarity values at each shift are represented by markers, with
a smoothed trend line fitted using a Savitzky-Golay filter to
highlight the underlying pattern while preserving key variations.
The analysis reveals a clear peak in similarity at around 0
sec shift between audio and video, providing evidence of
meaningful audio-video learning.

It is important to consider the nature of the data when inter-
preting these results. Events like hammering or gunshots, which
involve sharp and temporally precise correlations between
sound and image, exhibit a different behavior compared to
more continuous or slower-changing video scenes. For example,
considering a video of a train moving in the distance, subtle
audio-video delays may be less perceptually disruptive but
still affect cosine similarity scores. In such cases, lower cosine
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Fig. 4: Audio-to-video model performance over hours of training data, as determined by varying the selection of the MRE
score threshold, shown for Top-k = {1, 3, 10} accuracies.

TABLE I: Performance on Audio (A) - Video (V) Retrieval (Top-k = {1, 3, 10}) (%). Standard deviations shown as
superscripts depict performance variation over K=100 retrieval repetitions of random test subsets of size N=100.

Method Retrieval Type
AudioCaps VALOR VGG-Sound

Top1 Top3 Top10 Top1 Top3 Top10 Top1 Top3 Top10

Wav2CLIP [5]
A→V 1.20±0.98 6.40±3.01 18.60±3.83 3.60±0.80 8.60±0.49 18.20±3.54 3.40±1.36 8.20±1.17 19.80±3.06

V→A 3.80±2.14 10.00±3.22 20.00±3.63 4.20±2.64 8.00±4.24 19.00±3.52 3.80±1.94 9.20±2.32 19.60±1.62

Random
A→V 1.40±0.49 3.80±0.75 11.80±1.17 1.20±0.75 3.20±0.40 11.60±1.62 1.20±0.40 3.40±0.49 11.60±2.15

V→A 1.00±0.00 3.60±0.80 10.80±1.17 1.20±0.40 3.20±0.75 11.00±0.63 1.00±0.00 3.00±0.00 10.60±0.80

DenseAV [28]
A→V 10.20±2.04 22.60±4.54 49.40±4.54 7.80±5.19 19.00±5.90 41.80±4.79 6.80±2.64 16.00±2.90 43.20±3.43

V→A 1.40±0.80 5.60±1.85 26.40±2.73 2.20±1.17 5.80±2.79 24.60±7.68 1.60±1.02 5.00±0.63 22.60±2.58

ImageBind [7]
A→V 62.00±2.28 83.40±3.01 92.60±1.85 55.80±4.66 71.60±3.61 85.00±3.74 50.60±3.14 74.00±5.93 88.20±2.99

V→A 64.00±5.37 85.40±4.27 95.40±0.80 58.80±4.71 73.60±4.36 86.60±3.20 53.20±3.31 73.40±6.02 85.60±3.20

AVVA (Ours)
A→V 6.57±2.30 13.84±2.80 31.68±3.57 6.69±2.13 15.63±3.52 33.67±4.40 6.71±1.91 15.02±2.73 33.86±4.23

V→A 6.23±2.09 14.70±3.17 31.06±3.52 7.75±2.61 16.64±3.65 34.27±4.71 6.86±2.34 14.47±3.15 32.84±3.89

Fig. 5: Cosine similarity between AVVA embeddings (video
versus shifted audio) as a function of audio shift. The data
points show mean similarity scores at each shift level.

similarity may not necessarily imply poor alignment but rather
may reflect the characteristics of the content, emphasizing the
critical role of data context in assessing audiovisual alignment.

IV. CONCLUSION

AVVA addresses the challenges of joint multimodal learning
by directly processing and curating multi-faceted aligned
AV data without linguistic mediation in model training. Our
approach, utilizing a speech foundation model backbone,
demonstrates significant improvements in AV retrieval tasks.
The LLM-based MRE module for data curation rejects au-
diovisual pairs of low-scoring alignment and helps the model
achieve comparable performance to state-of-the-art methods
with substantially less training data. AVVA matches DenseAV’s
performance using only ∼ 192 hrs of curated data, compared
to DenseAV’s 5800+ hrs – a 30x gain in data utilization.
Experiments across multiple datasets showcase the merit
of AVVA’s methodology on reducing data utilization while
maintaining or improved performance. While more work is
needed to render the data curation process less computationally
expensive, including more efficient reasoning engines, the five
metrics comprising the proposed MRE score show a lot of
promise, and the overall results highlight the importance of
data quality in advancing multimodal AI models.
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“DINOv2: Learning Robust Visual Features without Supervision,” Trans.
on Machine Learning Research, 2024.

[31] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, et al.,
“Beyond Neural Scaling Laws: Beating Power Law Scaling via Data
Pruning,” Adv. Neural Inform. Process. Syst., Vol. 35, pp. 19523–19536,
2022.

[32] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes,
et al., “Textbooks Are All You Need,” 2023.

[33] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler,
et al., “The Epic-Kitchens Dataset: Collection, Challenges and Baselines,”
IEEE Trans. Pattern Anal. Mach. Intell., Vol. 43, No. 11, pp. 4125–4141,
2020.

[34] Antoine Miech, Ivan Laptev, and Josef Sivic, “HowTo100M: Learning a
Text-Video Embedding by Watching Hundred Million Narrated Video
Clips,” Int. Con. Comput. Vis., 2019.

[35] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Torralba, “The
Sound of Motions,” Int. Con. Comput. Vis., pp. 1735–1744, 2019.

[36] Sihan Chen, Xingjian He, Longteng Guo, Xinxin Zhu, et al., “VALOR:
Vision-Audio-Language Omni-Perception Pretraining Model and Dataset,”
arXiv preprint arXiv:2304.08345, 2023.

[37] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman,
“VGGSound: A Large-Scale Audio-Visual Dataset,” Int. Con. Acoustics,
Speech, and Sig. Process. IEEE, pp. 721–725, 2020.

[38] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu,
“Audio-Visual Event Localization in Unconstrained Videos,” Eur. Con.
Comput. Vis., pp. 247–263, 2018.

[39] Google Research, “AudioSet,” 2017, Available online: https://research.
google.com/audioset/download.html [Accessed: June 21, 2025].

[40] Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee
Kim, “Audiocaps: Generating Captions for Audios in the Wild,” Proc.
Annual Con. North American Chapter Assoc. for Comput. Linguistics,
pp. 119–132, 2019.

[41] Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun, et al.,
“Advancing High-Resolution Video-Language Representation with Large-
Scale Video Transcriptions,” IEEE Con. Comput. Vis. Pattern Recog.,
2022.

[42] Yazhou Xing, Yingqing He, Zeyue Tian, Xintao Wang, et al., “Seeing and
Hearing: Open-Domain Visual-Audio Generation with Diffusion Latent
Aligners,” IEEE Con. Comput. Vis. Pattern Recog., pp. 7151–7161, 2024.

[43] Davide Berghi, Peipei Wu, Jinzheng Zhao, Wenwu Wang, et al., “Fusion
of Audio and Visual Embeddings for Sound Event Localization and
Detection,” Int. Con. Acoustics, Speech, and Sig. Process. IEEE, pp.
8816–8820, 2024.

[44] Yiyang Su, Ali Vosoughi, Shijian Deng, Yapeng Tian, et al., “Separating
Invisible Sounds Toward Universal Audiovisual Scene-Aware Sound
Separation,” Int. Con. Comput. Vis., 2023.

[45] Guangzhi Wang, Yixiao Ge, Xiaohan Ding, Mohan Kankanhalli, et al.,
“What Makes for Good Visual Tokenizers for Large Language Models?,”
arXiv preprint arXiv:2305.12223, 2023.

290


