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1Department of Advanced Computing Sciences (DACS), Maastricht University, Maastricht, The Netherlands
2Potsdam Institute for Climate Impact Research, Potsdam, Germany

Email: {m.bousse, philippe.dreesen}@maastrichtuniversity.nl

Abstract—While recurrence plots (RPs) are a well-known tool
in various fields such as physics, astronomy, and health sciences,
their application in audio signal processing remains limited. RPs
are a data-analysis tool that visualizes recurrences of states, which
are typically measured by the Euclidean norm. When analyzing
audio data, however, β-divergences are more common than the
Euclidean norm because of their adaptability and suitability for
audio-specific characteristics. Therefore, we propose the use of β-
divergence-based RPs to gain additional insight into audio data.
In this paper, we explore the properties of such RPs, providing
a fundamental understanding of their characteristics and an
indication of possible future applications. Our findings show that
β-divergence-based RPs can provide additional information over
traditional RPs, making them well-suited for audio analysis.

Index Terms—recurrence plots, β-divergences, audio analysis

I. INTRODUCTION

Recurrence Plots (RPs) are a versatile visual data-analysis
tool for analyzing the dynamical behavior of nonlinear systems
with applications in fields ranging from physics and astronomy
to health and life sciences [1]–[3]. Recently, there has been
an increase in the use of RPs for various applications, driven
by the wider availability of relevant software [1].

Different data types have varying characteristics that are not
always adequately captured by the Euclidean distance which is
typically used in RPs, making it necessary to employ specific
distance measures, see [4]. In this paper, we propose the use of
β-divergences for the recurrence computation, leading to the
definition of β-divergence-based RPs (β-RPs). This flexible
method allows us to analyze a wider range of data types, and,
in particular, audio data. We show that β-RPs can reveal more
information than what is possible with traditional RPs.

Recurrences are repetitions where states are arbitrarily close
after a period of time. Visualizing these recurrences with
RPs enables the identification of diverse dynamical behaviors
and complex patterns within systems [5]. The state space
of a univariate time series u of length K can be recon-
structed by embedding the time series, using an embed-
ding dimension m and time delay τ , expressed in samples,
such that xi =

[
ui ui+τ · · · ui+(m−1)τ

]T
, where xi

is the ith embedding of length m using time delay τ and
i ∈ {1, 2, . . . ,K − (m − 1)τ}. RPs are then constructed by
computing the pairwise distance d(xi,xj) between states. The
recurrence matrix R is defined as

rij =

{
1, if d(xi,xj) < ϵ,

0, otherwise,
for 1 ≤ i, j ≤ N (1)
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Fig. 1. The parallel diagonal lines in the distance matrix and RP indicate the
periodic behavior of the sine function, shown for f(t) = sin(2πt) in [0, 5],
sampling K = 100 points with m = 10, τ = 1, and ϵ = 0.1, comparing
N = 91 states.

where xi is the state of a system at time i, ϵ is the threshold
parameter, d(·, ·) is the distance metric (usually the Euclidean
norm), and N = K − (m − 1)τ is the number of states.
The matrix is plotted with a dot at every (i, j)-th entry where
xi and xj are sufficiently close (i.e., a recurrence occurs),
revealing informative patterns that relate to properties of the
underlying system, see Figure 1 for an example. It can be
useful to plot the distance matrix D, where dij = d(xi,xj),
using a color scale displaying the full variety in distances.

In addition to the qualitative analysis of RPs, Recurrence
Quantification Analysis (RQA) entails the construction of
features quantifying diagonal and vertical line structures in
RPs [5]. These features can then be used for further anal-
ysis or classification tasks. This paper uses the following
traditional RQAs to provide a comprehensive framework for
characterizing recurrence properties. Recurrence Rate (RR)
represents the percentage of recurrence points. Determinism
(DET) quantifies the proportion of recurrence points that form
diagonal lines at least size ℓmin. The Average Diagonal Length
(L) measures the average length of diagonal lines at least size
ℓmin. Similarly, Laminarity (LAM) captures the proportion of
recurrence points that form vertical lines at least size ℓmin.
Finally, Trapping Time (TT) represents the average length of
vertical lines at least size ℓmin. RQA calculations depend on
the threshold parameter ϵ and the minimum line length ℓmin.

Methods that are similar in spirit to RPs have been applied
to music audio, such as self-similarity [6] and KL-based
independent subspace analysis [7]. While current applications
predominantly use the Euclidean distance to determine recur-
rences, there have been suggestions to tailor the recurrence
definition to the application by using specific similarity met-
rics [1]. In cases where only phase differences are of interest,
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e.g., in acoustic signal analysis, the angular distance is rec-
ommended [8]. For event-like data, an edit distance metric is
used [9]. Uncertain data is addressed by combining RPs with a
Bayesian approach to derive probabilities of recurrences [10].
These alternative recurrence definitions suggest the potential
adaptability and diversification of the recurrence definition
for specific applications. In audio analysis, Itakura-Saito (IS)
or Kullback-Leibler (KL) divergence is commonly applied
[11]. They are shown to be particularly useful when the data
consists of entries of different magnitudes [12]. For example,
in nonnegative matrix factorization (NMF) for audio spectra,
one can show that more information can be extracted when
using the IS- or KL-divergence [11].

The contribution of this paper is RP-based audio analysis
using β-divergences, which are a more appropriate metric
than conventional Euclidean distance for audio time series,
leading to more insights than what is possible with existing
methods. In particular, we show that the asymmetry in β-RPs
can be a potential source of additional information and leads to
new RQA measures. We develop an extensive understanding
of characteristics of simple time series and then apply it to
audio time series, revealing that the selection of β impacts
the emphasis on specific sets of values, highlighting the
significance of parameter selection.

II. METHODOLOGY

Instead of using “traditional” RPs, which use Euclidean
distance to determine recurrences, we compute the pairwise
distances in the recurrence matrix using β-divergences. The
latter are a continuous interpolation between the IS-divergence
(β = 0), KL-divergence (β = 1), and least-squares (LS)
distance (β = 2) [12]. They are a special class of Bregman
divergences [13] and defined on R+\{0} for β ∈ R as

dβ(x, y) =


x
y − log(xy )− 1, β = 0

x(log x− log y) + (x− y), β = 1
xβ+(β−1)yβ−βxyβ−1

β(β−1) , β ∈ R\{0, 1}.

When applied to vectors, the divergence is defined as an
element-wise β-divergence on (R+\{0})N :

Dβ(x||y) =
N∑

n=1

dβ(xn|yn). (2)

Generally, β-divergences with β < 2 emphasize differences
in small values more heavily than β = 2, while β > 2
emphasizes differences in large values [12]. Also, KL- or
IS-divergence assumes Poisson-distributed data and data with
multiplicative Gamma noise, resp., while LS distance assumes
additive independent and identically distributed Gaussian noise
[11]. The β-divergence for β = 0 is scale-invariant.

Unlike traditional similarity metrics such as Euclidean dis-
tance, β-divergences are not symmetric. The LS distance,
β = 2, on the other hand, is symmetric and has the same
characteristics as Euclidean distance. LS distance sums the
squared differences without taking the square root and includes
a factor of 1/2. Moreover, β = 1 may compute negative
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Fig. 2. As we deviate from β = 2, the β-divergence-based distance matrices
exhibit more asymmetric behavior, illustrated for a simple times series [3, 3,
3, 3, 3, 2, 2, 2, 2, 2] using m = 3, τ = 1.

values, but in the application of RPs, we are not interested in
the direction of the distance, so the absolute distance is used.
β-divergences are limited to distance calculations on positive
values. When considering audio data, we typically convert the
signal to a positive domain such as the absolute values or
square values. All computations were done in MATLAB1.

III. EXPERIMENTS AND RESULTS

In order to understand the general characteristics of β-RPs,
we perform a qualitative analysis on a series of increasingly
intricate test signals. We begin with three very simple signals
to build intuition about value behavior and allow for easy
verification. Complexity is gradually increased, with the third
signal introducing a more elaborate structure that begins to
resemble audio-like patterns, though the values remain simple.
Signals and parameters are chosen in such a way as to
demonstrate certain properties and behaviors while keeping
them simple enough to maintain comprehensibility.

A. Asymmetry

As β deviates from 2, i.e., as we deviate from the LS
distance-based case, asymmetric patterns in the RP become
more pronounced. To illustrate this, we analyze a simple signal
u = [3, 3, 3, 3, 3, 2, 2, 2, 2, 2] using an embedding dimension of
m = 3 and a time delay of τ = 1, see Figure 2. When two
identical embedding vectors are compared, their distance is 0,
which is visible along the diagonal of the plot and, in this case,
across most of quadrants 1 and 3. As the embedding vectors
differ by 1, 2, or 3 digits, the distances increase accordingly.
For β = 2, the plot is symmetric. However, for β ̸= 2, this
symmetry is lost, resulting in a distinct difference between
the upper and lower halves of the plot. This is due to the fact
that (x > y) → (dβ(x|y) > dβ(y|x)) holds for β ∈ 0, 1 and
(x > y) → (dβ(y|x) > dβ(x|y)) holds for β ∈ 3, 4. This
characteristic is amplified as β deviates from 2.

1MATLAB code is publicly available from gitlab.com/mbousse/beta-
divergence-based-recurrence-plots-for-audio-time-series-analysis.
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Fig. 3. For β = 1, the distance matrix deviates as there is less emphasis on
the order of values within an embedding, illustrated for a simple time series
[1, 2, 3, 2, 1, 2, 3, 2, 1] using m = 3, τ = 1.

B. Less Emphasis on Value Order for β = 1

For β-RPs using β = 1 a deviating RP-pattern
can be observed as there is less emphasis on the or-
der of values within an embedding. This can be il-
lustrated for a sawtooth time series (Figure 3). For
β ̸= 1 the most distant points appear at coordinates
(1, 7), (1, 3), (3, 1), (3, 5), (5, 3), (5, 7), (7, 1), and (7, 5), vi-
sualizing the distance of vectors [1, 2, 3] and [3, 2, 1]. Looking
at β = 1, these same points have a distance smaller than
1 and are therefore not the most distant points in the plot.
The second most distant points for β ̸= 1, at coordinates
(4, 2), (4, 6), become the most distant elements for β = 1.
Therefore, in contrast to the other β values, we can observe
that the calculation for β = 1 results in less emphasis on the
value order and creates a deviating RP pattern.

C. Emphasis on Differences in Small Values for β < 2

RP computations with β ∈ [0, 1] visualize the emphasis
on differences in small values. In Figure 4, we increased the
complexity of the time series by considering multiple peaks.
This structure mimics an absolute or square value audio signal
that we are analyzing. In the RPs, for β ≥ 2, we can only see
the two major peaks, while β = 0 and β = 1 show smaller
existing peaks. This indicates how KL-divergence and IS-
divergence emphasize differences in small values. If we scale
this signal with any factor, meaning we apply an amplitude
shift, the RPs for all β-values stay the same. If we shift the
signal up with a vertical translation, β = 0 does not see small
peaks as small values anymore and therefore does not visualize
them. On the contrary, β = 1 still shows multiple peaks.

D. Scale Invariance

The property of scale invariance that is unique for β = 0 in
β-divergences is not significant in RPs. This is because RPs
inherently visualize distances based on the scale of the mini-
mum and maximum distances in the data, ensuring that scale
invariance is maintained for all values of β. Consequently, the
visual representation of the RP remains unchanged regardless
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Fig. 4. For β < 2, the RPs show more emphasis on the differences in small
values, illustrated for a time series [1, 1, 1, 1, 3, 9, 1, 1, 1, 1, 1, 1, 1, 2, 4,
1, 1, 1, 1, 3, 2, 12, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1,
1, 1, 1, 1, 2, 1] using m = 3, τ = 1, ϵ = 0.1 where r(i, j) = 0 is black.

of the value of β. However, for β ̸= 0 the actual distances
in an unscaled RP will differ. Therefore we can not uniquely
leverage the property of scale invariance for β = 0.

IV. STUTTERING AUDIO DATA APPLICATION

We illustrate the use of β-RPs on a stuttering audio dataset,
demonstrating that β-RPs can exhibit more information than
traditional RPs. The audio signals are taken from the SEP-28k-
E stutter podcast dataset [14], [15]. Recall that β-divergences
can only be used on positive values, hence, we first square
the values. The signals are also downsampled to reduce
computational load. A common lower limit on the sampling
rate for human speech audio is 8 kHz, which is sufficient to
capture speech frequencies up to 4 kHz [16]. We decided to
downsample the data to a rate of 2 kHz as this allows the
speech signals to still be comprehensible when listening to it.

In Figure 5, the audio signal has two sets of large peaks
and multiple ones with medium peaks. The β-divergence-
based distance matrices for β ≥ 2 strongly emphasize the
larger sets of peaks while β = 1 also visualizes the smaller
ones, demonstrating suitability for audio signals with great
range in amplitude. For the second signal, in Figure 6, this
characteristic is not quite as relevant, as the signal mostly has
sets of high peaks. We can also see that β = 1 has fewer
vertical lines due to its asymmetric nature.

A. Importance of Parameter Selection for Audio Data

Parameter selection in RP computations is crucial to capture
relevant characteristics of audio signals. The analysis strongly
depends on the embedding dimension m, time delay τ , and
threshold ϵ. Increasing m expands the vertical and horizontal
line structures, representing distant parts in the time series
(Figure 7). This behavior also appears in β-RPs for all values
of β. A larger time delay increases the non-recurrent streaks,
especially in the lower right half, see Figure 8.

A suitable threshold ϵ is crucial to reveal relevant features in
the RP as shown in Figure 9. With a higher value, e.g. 0.1, we
recognize only the large peaks in the time series. In contrast,
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Fig. 5. For β = 1 the distance matrix recognizes smaller peaks in the time
series, illustrated for an audio signal StutterTalk 2 15 with m = 50, τ = 1.
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Fig. 6. For β = 1 the distance matrix shows fewer vertical streaks, illustrated
for an audio signal StutterTalk 2 19 with m = 50, τ = 1.
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Fig. 7. Increasing the embedding dimension increases the width of horizontal
distant streaks in the RP, illustrated for an audio signal StutterTalk 2 15 with
τ = 1, ϵ = 0.1, β = 1, where r(i, j) = 0 is black.
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Fig. 8. Increasing the time delay increases the number of non-recurrent
embeddings in the RP, illustrated for an audio signal StutterTalk 2 15 with
m = 50, ϵ = 0.1, β = 1, where r(i, j) = 0 is black.
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Fig. 9. Threshold value has a strong influence on the information we can
retrieve from the RP, illustrated for an audio signal StutterTalk 2 15 with
m = 50, τ = 1, where r(i, j) = 0 is black.

TABLE I
RQA VALUES FOR DIFFERENT β VALUES CALCULATED FOR AN AUDIO

SIGNAL STUTTERTALK 2 15.WAV, WITH ϵ = 0.1

β RR DET L LAM LAM h ∆LAM TT TT h ∆TT

0 0.9992 0.9997 2878.33 0.9973 0.9961 0.0012 3639.98 5034.93 1394.95
1 0.8732 0.9792 830.04 0.9875 0.9751 0.0124 2711.13 969.40 1742.73
2 0.8744 0.9924 785.44 0.9935 0.9935 0 1395.80 1395.80 0
3 0.9210 0.9904 998.14 0.9987 0.9924 0.0063 1860.58 1897.69 37.11
4 0.9451 0.9878 1194.76 0.9951 0.9921 0.0030 1884.90 2891.45 1006.55

a smaller value, e.g. 0.02, reveals more spikes, potentially
exposing relevant information. For β = 1, decreasing the
threshold also reinstates the vertical pattern.

B. RQA in Audio Data β-RPs

The emphasis on small values and the loss of vertical non-
recurrent streaks is also clear from the RQA. Moreover, we in-
troduce possible new horizontal RQA measures. Table I shows
the RQA for the RPs in Figure 5 with ℓmin = 100 and ϵ = 0.1.
We added horizontal features where “LAM h” represents the
proportion of recurrent points that form horizontal lines at least
size ℓmin and “TT h” the average horizontal line length. For
the symmetric RP, β = 2, these are equivalent to LAM and TT.
The RR for β = 0 is very high, followed by β = 3, 4 and then
β = 1, 2 (Table I). The latter has a similar RR because while
β = 1 has more non-recurrent horizontal lines, β = 2 has
additional vertical lines, see Figure 9. The fluctuation in RR
indicates that a threshold selection based on a fixed RR might
be useful when using different β values in classification tasks.
Moreover, the average line lengths horizontally are shorter for
β = 1 than the vertical ones as we do not have the repetition of
vertical non-recurrent streaks. ∆LAM and ∆TT demonstrate
the absolute difference in the vertical and horizontal values.
These features can be interpreted as an asymmetry measure.

RQA features can be used to train machine learning al-
gorithms for automated stuttering classification. Indeed, RPs
could possibly characterize repetitions, which can support
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speech pathologists with stuttering analysis. Our preliminary
results indicate that stuttering classification using RQAs com-
puted from β-RPs can perform better than traditional RPs.

V. DISCUSSION

This work provides an initial indication of the behavior
of β-RPs by analyzing simple time series. Notably, when
β ̸= 2 we can observe asymmetric behavior that decreases as
β approaches 2, where symmetry is restored. This asymmetry
reveals different information looking at horizontal and vertical
features. Establishing an understanding of these new horizontal
features and their connection to the physical process in the
underlying system remains intricate and requires deeper inves-
tigation. Moreover, the asymmetry of β-RPs as β approaches 0
tends to result in points being closer together. Consequently, a
lower threshold might be necessary to obtain valuable insights,
meaning that the range for suitable thresholds deviates from
existing research. A certain degree of robustness towards the
order of values in an embedding dimension was demonstrated
for β = 1, suggesting it could be a suitable measure for count-
ing data. Furthermore, the property of β < 2 emphasizing
differences in small values could be observed.

When using β-RPs for (speech) audio, selecting suitable
parameters—threshold, embedding dimension, time delay, and
β—is essential to tailor the analysis to specific data properties.
Visual inspection shows strong sensitivity to these choices,
which can be addressed using selection techniques like False
Nearest Neighbors (FNN) for the embedding dimension and
Mutual Information for the time delay. Audio can vary greatly
in amplitude due to factors such as differences between speak-
ers, variations in pitch, and other acoustic characteristics [17].
Therefore, β = 1 shows promising results as it also considers
the distances in values in a smaller range of amplitudes. In
typical RP analysis, thresholds are typically around 0.1. For β-
RPs in audio data analysis, optimal thresholds vary for each β-
value and are generally lower. Therefore, selecting a threshold
that ensures a pre-selected RR could be useful.

VI. CONCLUSION

In this paper, we demonstrated that β-divergences can be
a viable similarity metric for RP construction by showing
their potential for audio time series analysis. The asymmetric
nature of β-RPs in contrast to traditional RPs can be a
source of additional information and leads to the definition
of additional RQA measures based on horizontal features.
We recommend comparing β-RPs with other (non)-Euclidean
distance measures in future work. Furthermore, beyond the
normal parameter tuning, the additional numerical value of β
can also be used as a hyperparameter to tailor the analysis to
specific data characteristics, especially for machine learning
algorithms. In future work, we will analyze the potential of
β-RPs in audio classification tasks.
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