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Abstract—Artificial Bandwidth Extension (ABE) enhances nar-
rowband speech quality by reconstructing the lost high-frequency
components essential for clarity and naturalness. In this work,
we propose a novel ABE framework that integrates the constant-
Q Transform (CQT) and its variant within a lightweight neural
network. Unlike traditional methods relying on the short-time
Fourier transform (STFT), our approach leverages CQT’s loga-
rithmic frequency scaling and superior low-frequency resolution
to better align with human auditory perception. Two CQT-
based feature extraction schemes are introduced: a standard
method that extracts narrowband (NB) CQT representations
and a modified variant that employs a stacking and masking
operation to compensate for missing high-frequency content.
A compact Multi-Layer Perceptron (MLP) is then trained to
map the extracted features to full wideband (WB) spectral
representations. Phase reconstruction is achieved using either
spectral folding or spectral shifting in conjunction with in-
verse CQT (iCQT), enabling effective reconstruction of the
time-domain speech signal. Evaluations on the TIMIT dataset
show that our model with modified CQT and spectral folding
outperforms traditional methods, achieving lower Log Spectral
Distance (LSD) and Visual Geometry Group (VGG) distance
and higher Virtual Speech Quality Objective Listener (ViSQOL)
values. Additionally, subjective evaluations using the MUSHRA
framework validate the improvements in perceptual quality
offered by the proposed approach.

Index Terms—Artificial Bandwidth Extension, Constant-Q
Transform, Multi-Layer Perceptron

I. INTRODUCTION

Speech quality is closely linked to frequency bandwidth,
with wider bandwidth generally delivering better intelligibility
and clarity [1]. However, many telecommunication systems
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still transmit speech in a narrowband (NB) range of 300-
3400 Hz, a limitation common in legacy networks and spe-
cialized scenarios. This restriction diminishes intelligibility
and naturalness by omitting high-frequency cues crucial for
distinguishing consonants and unvoiced phonemes [2].

Artificial Bandwidth Extension (ABE), or audio super-
resolution, addresses these constraints by reconstructing the
missing high-frequency components to approximate wideband
(WB) audio. Early ABE methods used statistical techniques
such as Gaussian Mixture Models (GMMs) and Hidden
Markov Models (HMMs) to estimate lost high-frequency
content based on relationships between NB and WB features
[3]–[6]. However, these approaches often struggled to capture
critical spectral details and balance energy across frequency
bands, compromising the fidelity of reconstructed speech [7],
[8]. With the advent of deep learning, modern ABE systems
now employ neural networks to map NB inputs to WB outputs.
These methods generally fall into two categories: spectrum-
based approaches [9]–[11] and waveform-based approaches
[12], [13]. Waveform-based solutions process time-domain
signals directly, preserving amplitude and phase but often at
high computational cost. Spectrum-based methods, operating
in the frequency domain, estimate missing high-frequency
components more efficiently, though phase approximations can
affect naturalness. Some models integrate Generative Adver-
sarial Networks (GANs)—training 1D convolutional autoen-
coders with adversarial and reconstruction losses—to enhance
performance [9]. In contrast, others adopt a dual strategy,
using one network for high-frequency magnitudes and another
(like MelGAN) to refine phase [10]. U-Net-based models
like AERO [11] use complex spectrograms to handle both
magnitude and phase effectively, and NU-Wave/NU-Wave 2
employ diffusion-based techniques to upsample audio to 48
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kHz, with the latter accommodating various input sampling
rates [12], [13]. Computational complexity and training chal-
lenges continue to pose significant obstacles for large models,
particularly GANs, hindering their real-time and large-scale
deployment. Furthermore, the common reliance on the short-
time Fourier transform (STFT) for feature extraction imposes
inherent trade-offs between time and frequency resolution and
maintains uniform bin spacing that may not optimally benefit
all frequency bands.

This paper introduces a lightweight neural ABE framework
that utilises Constant-Q Transform (CQT) [14] for feature
extraction of upsampled NB speech signals. CQT provides
a logarithmic frequency scaling and enhanced resolution at
low frequencies. Earlier studies employing GMMs have hinted
at the effectiveness of CQT in bandwidth extension [15],
yet our approach remains the first to integrate CQT into
a neural network for ABE. We propose two CQT-based
strategies—standard and modified—to address missing high-
frequency components, and we explore two distinct phase
reconstruction methods: spectral folding (SF) and spectral
shifting (SS) [16]. We train a Multi-Layer Perceptron (MLP)
and compare its performance against GMM and MLP-based
methods using STFT and CQT to assess our approach. Ob-
jective metrics such as Log Spectral Distance (LSD) [17],
Visual Geometry Group (VGG) distance [18], and Virtual
Speech Quality Objective Listener (ViSQOL) [19], along with
subjective listening evaluations, confirm the advantages of
using CQT with a neural model.

The rest of the paper is organized as follows: Section II
details the proposed framework, and Sections III & IV cover
the experimental evaluation and conclusion.

II. PROPOSED FRAMEWORK

This section introduces the CQT and two feature extraction
schemes for dataset generation. It then discusses the network
architecture and the speech reconstruction strategy.

A. Constant-Q Transform (CQT)

The Constant-Q Transform (CQT) utilizes filters charac-
terized by a quality factor 𝑄 defined as the ratio of centre
frequency 𝑓𝑘 of 𝑘-th frequency bin to its bandwidth as:
𝑄 =

𝑓𝑘
𝑓𝑘+1− 𝑓𝑘 . For centre frequencies arranged in a geometric

progression, the 𝑘-th centre frequency is given by 𝑓𝑘 =

𝑓1 · 2(𝑘−1)/𝐵, where 𝑓1 is the lowest frequency, and 𝐵 denotes
the number of bins per octave, determining the time-frequency
resolution. The CQT of a discrete signal 𝑥(𝑛) is expressed as,

𝑋 (𝑘, 𝑛) =
𝑛+

⌊
𝑁𝑘
2

⌋∑︁
𝑗=𝑛−

⌊
𝑁𝑘
2

⌋ 𝑥( 𝑗)𝑎∗𝑘 ( 𝑗 − 𝑛 + 𝑁𝑘2 ) , (1)

here, ⌊·⌋ represents the floor operator, ensuring rounding down
to the nearest integer, 𝑎𝑘 (𝑛) denotes the basis functions,
∗ signifies the complex conjugate, and 𝑁𝑘 is the window
length that varies with frequency. Further details on the CQT
framework, including the mathematical formulation of 𝑎𝑘 (𝑛)

Fig. 1. Block diagram depicting the two processes for the CQT-based feature
extraction for data generation.

and its inverse transform (iCQT), as well as computationally
efficient implementation strategies, can be found in [20].

Algorithm 1: CQT-based feature extraction
Data: WB speech signal 𝑥wide (𝑛).
Result: Modified CQT features Xmod and labels Xwide
Step 1: Low-pass filter 𝑥wide (𝑛) to obtain 𝑥narrow (𝑛).
Step 2: Compute magnitude of CQT-A from 𝑥narrow (𝑛) as
Xnarrow ∈ R𝐾×𝐹 with 𝐵 = 48 bins per octave, 𝑓min = 62.5
Hz, and 𝑓max = 8000 Hz.

Step 3: Compute magnitude of CQT-B from 𝑥narrow (𝑛) with
𝐵 = 48 bins per octave, 𝑓 ′min = 62.5 Hz, and 𝑓 ′max = 4000
Hz as X′

narrow ∈ R𝐾
′×𝐹 .

Step 4: Select last 𝐿 frequency bins from X′
narrow, closest to

𝑓 ′max and form J ∈ R𝐿×𝐹 as in Eq. 2.
Step 5: Stack J for 𝑃 times to form M:

M𝑇 =
[
J𝑇1 J𝑇2 · · · J𝑇

𝑃

]
∈ R𝐹×𝐵,

where 𝐵 = 𝑃 · 𝐿, such that (𝐵 mod 𝐿) = 0.
Step 6: Create a matrix G, such that:

G =

[
0(𝐾−𝐵)×𝐹

M𝐵×𝐹

]
∈ R𝐾×𝐹 .

Step 7: Obtain Xmod ∈ R𝐾×𝐹 as Xmod = G + Xnarrow.
Step 8: Compute the magnitude of CQT-A with the

parameters used in Step 2 as, Xwide ∈ R𝐾×𝐹 .

B. Feature Extraction via CQT: Data Generation

This section defines two feature extraction approaches: (a)
CQT-based feature extraction and (b) modified CQT-based
feature extraction for NB speech signals.

1) CQT based feature extraction (switch A): In this method,
a WB speech signal 𝑥wide (𝑛) sampled at 𝑓𝑠 = 16 kHz
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undergoes low-pass Butterworth filtering (order 𝑁 = 50, cutoff
𝑓𝑐 = 4 kHz). This produces an NB signal 𝑥narrow (𝑛), shown in
Fig. 1, lacking higher frequency components. The magnitude
of CQT-based feature Xnarrow ∈ R𝐾×𝐹 is then extracted via
switch A, where 𝐾 and 𝐹 represent frequency bins and frames,
respectively. The spectral content in Xnarrow above 4 kHz is
zero, as seen in the NB speech spectrogram in Fig. 1. For
supervised learning, labels are generated by computing the
CQT representation (CQT-L) of 𝑥wide (𝑛). The input-label pairs
consist of Xnarrow ∈ R𝐾×𝐹 as the input and Xwide ∈ R𝐾×𝐹 as
the label, used to train the 𝑀𝐿𝑃𝐴 described in Section II-C.

2) Modified CQT-based extraction (switch B): This feature
extraction process, outlined in Algorithm 1 and Fig. 1 (with
switch B connected), starts by computing the CQT magnitude
Xnarrow ∈ R𝐾×𝐹 (step 2) for the filtered NB signal 𝑥narrow (𝑛),
which lacks high-frequency content. Since Xnarrow has nearly
zero energy in higher frequencies, step 3 addresses this by
computing a second CQT representation via CQT-B, yielding
X′

narrow ∈ R𝐾
′×𝐹 with modified parameters: 𝑓 ′min = 𝑓min and

𝑓 ′max ≪ 𝑓max. The last 𝐿 frequency bins of X′
narrow, nearest to

𝑓 ′max, are selected to form J ∈ R𝐿×𝐹 as,

J =


𝑋 ′

narrow, 𝐾 ′−𝐿, 0 · · · 𝑋 ′
narrow, 𝐾 ′−𝐿, 𝐹−1

...
. . .

...

𝑋 ′
narrow, 𝐾 ′−1, 0 · · · 𝑋 ′

narrow, 𝐾 ′−1, 𝐹−1

 ∈ R𝐿×𝐹 .

(2)
Empirically, testing various values of 𝐿 showed that 𝐿 = 1

yields the best performance. In step 5, J is further stacked 𝑃
times to create a mask M ∈ R𝐵×𝐹 . In steps 6 and 7, we first
create the matrix G ∈ R𝐾×𝐹 by placing the mask M in the last
𝐵 rows and then replace the last 𝐵 frequency bins of Xnarrow
by computing Xmod = (G + Xnarrow) ∈ R𝐾×𝐹 . This adjustment
provides a structural prior that acts as a soft inductive bias
and helps the model learn harmonic and spectral continuity,
which would otherwise need to be inferred from narrowband
inputs alone. Labels are generated by computing the CQT
representation (CQT-A) of the WB signal 𝑥wide (𝑛) (Section
II-B1). The final input-label pairs consist of Xmod as input
features and Xwide ∈ R𝐾×𝐹 as labels for training 𝑀𝐿𝑃𝐵.

C. Network Architecture

The network is a three-layer MLP, shown in Fig. 2. The in-
put to the MLP is a feature vector of size 336, corresponding to
the extracted CQT bins 𝐾 . The hidden layers comprise 512 and
256 neurons utilizing ReLU activation functions, followed by
an output layer that reconstructs the CQT bin dimensions using
a linear activation function. The total trainable parameters for
the network are roughly 0.39𝑀 . The network is optimized
using the Adam optimizer with a learning rate of 0.001 and
Mean Squared Error (MSE) as the loss function. Training runs
for 50 epochs with a batch size of 64, utilizing a validation
dataset to assess generalization.

D. Speech Signal Reconstruction

To reconstruct the speech from the CQT representation
obtained via 𝑀𝐿𝑃𝐴 or 𝑀𝐿𝑃𝐵, phase information is retrieved

using either (a) spectral folding (SF) (switch C) or (b) spectral
shifting (SS) (switch D) [16], illustrated in Fig. 2. With SF
(switch C), phase excitation is generated by using aliasing
effects from sub-sampling and mirroring, effectively extending
the spectrum in the time domain as:

𝑥SF (𝑛) =
{

2 · 𝑥narrow (𝑛), 𝑛 even
0, 𝑛 odd.

(3)

Every second sample in 𝑥narrow (𝑛) is set to zero, while the
remaining values are amplified by a factor of two, forming
𝑥SF (𝑛). The phase is extracted using CQT-C as 𝑒 𝑗 (∠XSF ), and
combined with the magnitude Ywide ∈ R𝐾×𝐹 to create the
complex representation Ŷwide ∈ C𝐾×𝐹 . The wideband speech
signal 𝑦wide (𝑛) is then reconstructed using iCQT.

For SS (switch D), the phase excitation is achieved by
modulating 𝑥narrow (𝑛) with a cosine function at 𝜔

𝑆𝑆
=

2𝜋 𝑓𝑜
𝑓𝑠

,
shifting the spectral content upwards by 𝑓𝑜 as,

𝑥SS (𝑛) = 𝑥narrow (𝑛) + 𝑥narrow (𝑛) cos
(
𝑛 · 𝜔

𝑆𝑆

)
∗ ℎHP , (4)

here, cos
(
𝑛 · 𝜔

𝑆𝑆

)
modulates the signal, while ℎHP removes

aliasing components. This shifts the lower spectral content to
a higher frequency range. The phase is then retrieved via CQT-
C, subsequently Ywide, and transformed back using iCQT to
reconstruct 𝑦wide (𝑛), as shown in Fig.2.

III. EXPERIMENTAL EVALUATION

This study uses the TIMIT corpus [21] to train and evaluate
ABE techniques. TIMIT includes 6,300 utterances from 630
U.S. speakers, sampled at 16 kHz, with a gender distribution
of 70% male and 30% female. For this work, 4, 392 samples
are used for training, 228 for validation, and 1, 680 for testing.
To evaluate the proposed techniques, NB speech signals are
upsampled from 8 kHz to 16 kHz and filtered, as shown
in Fig. 2. The reconstructed WB speech signal 𝑦𝑤𝑖𝑑𝑒 (𝑛) is
derived through SS or SF phase excitations, which correspond
to the connection of switch D and switch C, respectively. The
naming convention (e.g., MLPBC-CQT) indicates that 𝑦wide (𝑛) is
reconstructed via SF (switch C) and the MLP is trained with
modified CQT features (switch B), as shown in Fig. 2. The
network MLPA or MLPB predicts the WB magnitude X′

wide,
further refined by replacing the first 288 frequency bins of
X′

wide with those of Xnarrow to form the combined magnitude
Ywide. The final WB speech is reconstructed as in section II-D.

A. Objective Evaluation

Three standard metrics are used to evaluate ABE techniques:
(a) LSD [17], (b) VGG distance [18], and (c) ViSQOL [19].
LSD measures spectral distortion, VGG distance uses VGG-
16 to extract high-level features and computes perceptual
differences via ℓ2 norm, while ViSQOL evaluates speech
quality based on auditory models. The performance of various
ABE techniques is evaluated in Table I. The results indicate
that MLPBC-CQT, which employs SF for phase reconstruc-
tion, achieves the lowest LSD and the highest ViSQOL and
VGG scores. On the other hand, MLPBD-CQT with SS yields
slightly degraded performance compared to MLPBC-CQT. On
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Fig. 2. Block diagram illustrating the testing process, covering upsampling, CQT feature extraction, magnitude prediction and combination, phase restoration,
and iCQT to reconstruct the time-domain speech signal for 𝑀𝐿𝑃𝐴 and 𝑀𝐿𝑃𝐵, respectively.

Fig. 3. Spectrograms of speech signals for (a) NB, (b) original WB, (c) MLPBC-CQT, (d) MLPBD-CQT, (e) MLPAC-CQT, (f) MLPAD-CQT, (g) MLPSTFT, (h)
GMMCQT , and (i) GMMSTFT .

TABLE I
OBJECTIVE METRICS EVALUATION OF MLP AND GMM MODELS USING

CQT AND STFT FEATURES, COMPARED WITH NB PERFORMANCE.

Method Phase LSD VGG ViSQOL↑ Para.
Excitation (𝑑𝐵) ↓ distance ↓ (𝑀)

NB - 1.83 3.45 4.27 -
MLPBD-CQT SS 1.02 2.49 4.49 0.39
MLPAD-CQT SS 1.05 2.63 4.43 0.39
MLPAC-CQT SF 1.03 2.57 4.47 0.39
MLPBC-CQT SF 1.00 2.45 4.52 0.39
GMMSTFT SF 1.35 3.09 3.50 0.46
GMMCQT [15] SF 1.24 2.71 4.12 0.46
MLPSTFT [22] SF 1.16 2.74 4.20 0.39

the contrary, MLPAD-CQT performs worst among the proposed
MLPCQT techniques. A comparison of the spectrograms in
Fig. 3 (d) and (f) with Fig. 3 (c) and (e) shows energy loss
at 4 kHz, likely due to differences in phase reconstruction.
SS shifts energy from lower frequencies, reducing energy at
higher frequencies, whereas SF retains phase information in
higher frequencies, preserving energy.

Furthermore, Table I presents a comprehensive evaluation

for various ABE techniques. It also compares a method that
integrates GMMs and CQT, as outlined in [15]. This evaluation
examines how the modelling approach influences performance
while employing the same spectral technique (i.e. CQT). The
MLP and GMM models were also evaluated using commonly
used STFT features (denoted as MLPSTFT [22] and GMMSTFT)
to assess their impact on ABE performance. The STFT was
computed with 𝑛fft = 670 and hop-length = 𝑛fft/2, producing
336 frequency bins to match the CQT bins 𝐾 for a fair compar-
ison of trainable parameters and frequency bins. Comparisons
with GANs and other complex architectures were excluded
as they are out of the scope of this study, which focuses on
reduced complexity for real-time applicability.

The results highlight the superiority of MLPBC-CQT, achiev-
ing the lowest LSD (1.00 dB), VGG distance (2.45), and
highest ViSQOL score (4.52), demonstrating its effectiveness
in enhancing bandwidth-extended audio quality. MLP and
GMM models show improved performance with CQT over
STFT features, reaffirming CQT’s capability to capture rel-
evant audio information. The consistency across modelling
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Fig. 4. Mean MUSHRA scores (%) for various ABE techniques.

approaches emphasizes the advantages of CQT for ABE.

B. Subjective Evaluation

We assessed perceptual quality through subjective listen-
ing tests based on the MUSHRA framework [23]. The test
involved 13 sets of audio stimuli, each containing NB audio,
original WB audio, and WB audio outputs from various meth-
ods. Ten participants, native German speakers with English as
their second language (L2), evaluated the audio quality using
the ground truth WB signal as the reference (score = 100).
The remaining stimuli in each set were presented randomly
without identification, and participants rated their quality on a
scale from 0 to 100 after listening to all stimuli in a set. Each
group consisted of nine audio stimuli with identical speech
content but varying quality. The randomized playback ensured
unbiased comparisons. The mean scores are presented in Fig. 4
with MLPBC-CQT achieving a staggering score of 90.19% com-
pared to other techniques. This indicates superior perceptual
quality preserved and estimated by MLPCQT compared to
other methods, aligning with the objective evaluation. STFT-
based methods were rated below NB audio, diverging from
the objective results. The accuracy of the proposed method
can also be verified from the spectrograms of the audio signals
plotted in Fig. 3. We can observe from Fig. 3 (c) that MLPCQT
retains the harmonic characteristic of the speech signal in a
more accurate way compared to GMMSTFT or MLPSTFT.

IV. CONCLUSION

This study proposes a novel ABE framework employing
a frequency bin stacking approach with CQT representation
within an MLP framework. It investigates the use of spectral
folding (SF) and spectral shifting (SS) to incorporate phase
information for reconstructing the speech signal. The results
indicate that MLPCQT with SF delivers superior ABE perfor-
mance compared to its SS counterpart. On average, MLPCQT
with SF (MLPBC-CQT) outperforms GMMCQT by 9.9% in
objective metrics while achieving higher subjective listening
scores, with 15.2% fewer training parameters. Furthermore,
MLPBC-CQT consistently outperforms STFT-based methods
in both objective and subjective evaluations. Its lightweight
architecture further enhances its suitability for real-time appli-
cations. Future work will focus on improving phase estimation
and exploring alternative lightweight architectures to enhance
performance further.
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