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ABSTRACT
Third octave spectral recording of acoustic sensor data is

an effective way of measuring the environment. While there
is strong evidence that slow (1s frame, 1 Hz rate) and fast
(125ms frame, 8Hz rate) versions lead by-design to unintel-
ligible speech if reconstructed, the advent of high quality re-
construction methods based on diffusion may pose a threat, as
those approaches can embed a significant amount of a priori
knowledge when learned over extensive speech datasets.

This paper aims to assess this risk at three levels of attacks
with a growing level of a priori knowledge considered at the
learning of the diffusion model, a) none, b) multi-speaker data
excluding the target speaker and c) target speaker. Without
any prior regarding the speech profile of the speaker (levels
a and b), our results suggest a rather low risk as the word-
error-rate both for humans and automatic recognition remains
higher than 89%.

Index Terms— speech privacy, generative audio, acoustic
sensor networks, audio encoding

1. INTRODUCTION

In recent years, the use of acoustic sensors for audio data col-
lection has extended across diverse applications, encompass-
ing domains such as smart homes [1], [2] and urban sensor
networks [3], [4]. Ensuring the privacy of speech information
is a key aspect of the deployment of such sensors, be it de-
ployed on public or private places. A promising approach that
emerged from previous studies involves the encoding of au-
dio as fast third-octave spectrograms (FTOS), which are third-
octave spectro-temporal data computed with 125ms windows
and 20-29 frequency bands [5]. By considering a low sam-
pling rate, this method proved effective in preserving speech
privacy as phoneme average duration in spoken English is
typically below 100ms [6]. With longer windows, the co-
articulation of phonemes is lost, leading to an almost com-
plete loss of intelligibility. This loss ensures ”speech pri-
vacy”, simply termed in this paper ”privacy”. Speaker privacy
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by means of its identity is another important issue that is not
considered in this paper.

Considering an at the time state-of-the-art reconstruction
approach combining a) the Moore-Penrose pseudo-inverse
(PINV) for frequency retrieval and b) the Griffin-Lim al-
gorithm [7] for phase retrieval, Gontier at al. empirically
demonstrated that the recovered speech was unintelligible
[8]. Based purely on signal processing techniques, this re-
construction method do not consider any a priori knowledge
on spectro-temporal properties of spoken English. However,
to our knowledge, no attempts have been made to recover
speech information from FTOS data using deep learning
methods. With the recent advancements in generative audio
models [9], which leverage a priori knowledge from large
amounts of speech data, we believe that there is a need to
re-evaluate the aforementioned claim that is: FTOS encoding
is by-design preserving speech privacy.

Particularly, the emergence of diffusion models [10] may
pose a threat. These models are easier to train than Gener-
ative Adversarial Networks (GANs) and can thus be applied
to a broader range of fields. Indeed, diffusion models have
demonstrated super-resolution abilities [11], [12], and have
notably shown good performances in enhancing the quality
of speech [13], [14].

In order to evaluate potential privacy threats induced by
training such algorithms, we define three distinct Attack Lev-
els (AL) on FTOS data, based on training set selection:

– AL0 denotes an unintentional attack, occurring when a
model is trained on general urban data or without any
specialized training. The aim of the attacker in this
case is not to recover specifically speech information
but rather to reconstruct general audio for analysis pur-
poses.

– AL1 denotes an attack resulting from training a model
on general speech data. In this scenario, the attacker
aims to recover speech information from an unknown
speaker.

– AL2 denotes an attack executed by training a model
specifically on the voice of a target individual. In this
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Fig. 1. Pipeline for audio super-resolution. Module outlined with dashes does not require any training, module with a plain
outline is only pre-trained, and module outlined in bold is specifically trained for the task.
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Fig. 2. Log spectrograms of the LJ002-0068.wav audio file from the LJSpeech evaluation set. The Diffspec model, trained on
the LJSpeech training set, reconstructs a High-Res spectrogram (c) that closely matches the original (d).

scenario, it is assumed that the attacker has access to
sufficient clear speech data from his target.

To evaluate the impact of large-scale attacks on sen-
sor data, we anticipate that attackers will utilize Automatic
Speech Recognition (ASR) systems on FTOS data. Given
the uncertainty surrounding the effectiveness of ASRs in
processing severely downsampled acoustic signals such as
FTOS, we perform a subjective assessment through Human
Speech Recognition (HSR) evaluation. This subjective evalu-
ation provides a reference for interpreting ASRs performance
under those kind of adverse conditions.

In Section 2, we present a super resolution technique
based on diffusion [12] to recover speech from FTOS en-
coded speech. In Section 3, we describe the experimen-
tal protocol used to assess the privacy threat posed by this
method. Sections 4 and 5, detail our main findings based
on perceptual and computational assessment of intelligibility
under scenarios simulating the 3 levels of attack.1.

2. METHOD

Our proposed approach, which we refer to as the Diffspec
method, transform FTOS into Mel spectrograms using a
super-resolution algorithm, and use a vocoder for phase re-
construction. As audio is recovered, off-the-shelf ASRs or
HSR can be used to recover speech information. We believe
this approach is effective because it minimizes the need for
extensive training. By relying on a pre-trained vocoder for the
vocoding stage, the model only needs to focus on spectrogram
reconstruction, thereby simplifying the overall process.

1Code operating solely on public data and audio examples
are available at: https://modantailleur.github.io/
paperThirdOctavePrivacy/

FTOS GomiGAN Mel
sample rate 32kHz 24kHz
window size 4096 (128ms) 1024 (43ms)
hop size 4000 (125ms) 320 (11ms)
window Tukey Hann
frequency bins 20 128
min frequency 125Hz 23Hz
max frequency 10kHz 12kHz

Table 1. Differences between fast third-octave spectrograms
(FTOS) and GomiGAN Mel inputs.

As shown in Figure 1, we choose to use a Diffspec
pipeline considering Saharia et al. [12] super-resolution
algorithm applied on spectrograms, a conditioning method
notably utilized in the NU-Wave 2 algorithm [15]. For the
vocoder, we select the pre-trained GomiGAN model [16].
Consequently, the pipeline must align with the input dimen-
sions of the GomiGAN model, as shown in Table 1. Going
from FTOS to GomiGAN mels requires a 74x upscaling
factor. After the vocoding stage, audio segments of 1.36s
are computed and then concatenated with hops of 1.23s and
cross-fades to match the initial audio length. An example of
the spectrograms generated in the different Diffspec stages is
shown in Figure 2.

First, we create an initial low-resolution approximation
of a GomiGAN Mel spectrogram from the FTOS. We use a
Moore-Penrose pseudo-inverse followed by Mel filtering to
align with the target Mel frequency bins, and linear inter-
polation to match the number of time frames. This spectro-
gram will be referred to as Low-Res Mel spectrogram in the
following sections. Detailed methodology for obtaining this
pseudo-inverted Mel spectrogram can be found in Tailleur et
al. [17].

The Low-Res Mel spectrogram is then refined using a
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Diffspec based on the model proposed by Saharia et al. [12].
This refined spectrogram will be referred to as High-Res Mel
spectrogram. The U-net model used for the diffusion in-
cludes two ResNet layers per block, organized into six blocks
with 64, 64, 128, 128, 256, and 256 output channels, re-
spectively, and contains a total of 28 million parameters. It
features one attention block in both the downstream and up-
stream stages.

We then apply the GominGAN [16] vocoder on the out-
put of the Diffspec model. GomiGAN is a general-purpose
vocoder designed to convert any Mel spectrogram with char-
acteristics shown in Table 1 to waveform audio. It is trained
on a diverse range of audio datasets, including speech sig-
nals, music stems, animal sound recordings, and foley sounds.
The GomiGAN model is based on BigVGAN [18], enhanced
with Feature-wise Linear Modulation (FiLM) [19]. While the
Griffin-Lim algorithm is also a potential vocoder alternative,
GomiGAN offers several advantages. It runs approximately
15 times faster than Griffin-Lim with 32 iterations due to its
GPU compatibility, and informal listening by the authors in-
dicated superior audio quality. Objective and subjective eval-
uation have been considered for both vocoders. Only the Diff-
specs using GomiGAN as vocoder are reported in Section 5,
as no significant differences between the two vocoders are
found.

3. EXPERIMENTAL PROTOCOL

Data
For each Attack Level (AL) defined in Section 1, we select

a specific audio dataset to compute FTOS data to train our
model. The chosen datasets are:

– AL0 dataset: TAU Urban Acoustic Scenes 2020 Mo-
bile dataset [20]. This dataset contains 10-second audio
clips from 10 different acoustic scenes, including in-
door public spaces, public transports, streets, and parks.
While it includes some distant voice samples, it pri-
marily focuses on ambient urban sounds, and totals 64
hours of audio.

– AL1 dataset: Librispeech [21]. It consist of read audio-
books with more than 2,000 speakers. Specifically we
use the ”train-clean-100” subset, which includes 100
hours of audio data.

– AL2 dataset: LJSpeech 2. It comprises 13,000 audio
clips from a single speaker reading seven non-fiction
books, totalling 24h of audio. Like Librispeech, read-
ings are available through the LibriVox project. The
training dataset we considered comprises 12,900 audio
clips, as 100 are kept for evaluation.

For evaluation, we randomly select 100 audio samples
from the LJSpeech dataset. The relatively small size of the

2LJSpeech dataset available at: https://keithito.com/
LJ-Speech-Dataset/

evaluation subset is due to the high computational cost of the
inference of diffusion models.

Baseline
We compare our model against a simple pseudo-inverse

approach using a PINV transcoder, as described in section
2. Compared to the proposed approach, this baseline simply
bypasses the Diffspec step and applies the Vocoder directly to
the Low-Res Mel spectrogram.

Learning procedure
The Diffspec model is trained with a learning rate of

10−4, a batch size of 200, for 40,000 iterations.

Metric
To assess the privacy threat potentially induced by the

generated audio samples, we measure the Word Error Rate
(WER). The WER is a measure of the discrepancy between
the reference transcriptions and those produced by HSR or
ASR systems on the reconstructed speech. It is calculated as
the sum of the number of substitutions, deletions, and inser-
tions required to convert the inferred text into the reference
text, divided by the total number of words in the reference
text.

4. SUBJECTIVE EVALUATION

A subjective evaluation is performed on audio data recon-
structed from FTOS, using WER on transcriptions from fluent
english speakers who have reported normal hearing. Before
the final analysis, the first author manually performs obvious
grammar and typos corrections on all participants transcrip-
tions.

8 audio samples are selected from the 100 audio samples
of our LJSpeech evaluation subset, and are transformed into
FTOS. These samples are chosen to be at least 6-s long and
to contain content understandable without extensive cultural
knowledge, avoiding names and slangs.

From informal listening done by the authors, some of the
settings obviously lead to either full unintelligibility (AL0)
or full intelligibility (original mel processed through Gomi-
GAN). To keep the final perceptual test tractable and avoid
cluttering the evaluation with settings that show highly con-
trasting WERs, we decide to evaluate those highly contrasted
settings on a initial test conducted with only 3 participants.

20 other participants transcribe audios generated from the
remaining two settings, which are the Diffspec models trained
on Librispeech and LJSpeech (AL1 and AL2). Each partici-
pant transcribes a total of 16 audio samples: 4 samples from
each of the two systems (AL1 and AL2) and 8 from the orig-
inal audios. Participants whose transcriptions of the original
audios lead to a WER exceeding 10% are excluded from the
analysis. As a result, 3 participants are removed, leaving data
of 17 participants for analysis.

As shown in Table 2, our reference human speech recog-
nition (HSR) leads to a minimum of 92% WER on AL0, 90%
of WER on AL1 and 64% of WER on AL2.

308



Attack Level Training Set Method HSR FairseqS2T W2V2 CRDNN Whisper

- - Original (mel) 01 (±02) 10 (±16) 10 (±14) 09 (±13) 02 (±06)

- - White Noise - 97 (±04) 100 (±00) 99 (±03) 95 (±04)

AL0 - PINV transc. 98 (±04) 97 (±04) 95 (±06) 98 (±04) 82 (±20)

TAU Diffspec 92 (±09) 94 (±08) 93 (±09) 95 (±08) 92 (±13)

AL1 Librispeech Diffspec 90 (±10) 91 (±13) 89 (±11) 91 (±11) 85 (±17)

AL2 LJSpeech Diffspec 64 (±15) 53 (±21) 53 (±18) 46 (±23) 35 (±20)

Table 2. Word Error Rate (in %) on LJSpeech for the different combinations of methods and training sets. HSR represents
the Human Speech Recognition evaluated with perceptual experiment. The ”Original (mel)” method designates the original
audio transformed into a GomiGAN Mel spectrogram and ran through GomiGAN vocoder. The confidence interval is based on
standard deviation calculation.

5. OBJECTIVE EVALUATION

An objective evaluation is then performed using the WER
computed for different state-of-the-art automatic speech
recognition (ASR) models: Wav2Vec2 [22], the ”large-
v3” Whisper model [23], Fairseq S2T [24], as well as the
CRDNN model from the Speechbrain library [25] called
”asr-crdnn-rnnlm-librispeech”. Table 2 presents the results of
this evaluation.

The results indicate that all ASR systems yield WERs
comparable to HSR, with the exception of Whisper. As they
even outperform human evaluations at the AL2 attack level,
this suggests that ASR systems are generally robust and effec-
tive for processing reconstructed audio. The Whisper ASR
system exhibits a rather peculiar behavior, with overall low
WERs accross all atack levels. This is especially worrying
in the case of the PINV transcoder, showing a surprisingly
low 82% WER, where human listening demonstrate almost
complete unintelligibility (audio examples are provided on
the companion page). We suspect that this behavior may be
due to some sort of overfitting of this specific ASR to the
LJSpeech dataset. Due to a lack of full understanding, the
performance of Whisper is not discussed further.

For an unintentional attack resulting from training on a
non-speech dataset or using an non-learned algorithms (at-
tack level AL0), the results from the diverse ASR systems
show that speech is nearly unintelligible. In this scenario, the
WER is only a few percentage points lower than the one ob-
tained with white noise, which is consistent with the results
of Gontier et al. [8].

When targeting specifically speech information (attack
level AL1), the results are slightly more concerning. W2V2
notably achieves an 89% WER. Although this might not seem
alarming, understanding 10% of words could pose significant
privacy risks in certain contexts, particularly when deploying
systems in sensitive or private environments.

Targeting not only speech information but specifically the
voice of the LJSpeech speaker (attack level AL2), the WER
on W2V2 reaches up to 46%. While this level of WER indi-
cates that a significant portion of the speech remains unintel-
ligible, it is important to recognize that comprehending more

than 50% of the words in a conversation might allow to grasp
the overall meaning of the sentences. However, this scenario
remains extreme, as it only occurs when a model is specifi-
cally trained on the target speaker’s voice.

6. CONCLUSION

Using the Diffspec method across the different Attack Levels
(AL) we have established, our model demonstrates a mini-
mum Word Error Rate (WER) of 93% for AL0, 89% for AL1,
and 46% for AL2 for several ASR systems on our LJSpeech
test set.

Those results indicate a very low risk of extracting intel-
ligible speech information, as an AL2 requires clean speech
data from the target speaker. However, even with the seem-
ingly high WERs for AL1 and AL2, the risk associated with
these attacks is highly context-dependent. Future work could
therefore consider perceptual assessment of acceptable risk
thresholds for WER in specific application settings from pub-
lic spaces, to offices or bedrooms.

We have shown in this paper that with the rise of gen-
erative models, fast third-octave spectrograms are no longer
inherently privacy-aware as initially suggested by Gontier et
al. [8]. Future research could involve training and testing
models on multiple individual voices to further validate and
strengthen these findings.

We believe that the proposed Diffspec approach nicely
balance audio quality and training requirements in terms of
data and power, but more complex approaches could be con-
sidered. For example, one could train an end-to-end auto-
matic speech recognition (ASR) algorithm that uses fast third-
octave spectrograms (FTOS) as input instead of Mel spectro-
grams [26]–[29], though this approach would require inten-
sive training to reach the performance of off-the-shelf ASRs.
One could also consider training vocoders to convert third-
octave spectrograms directly to waveforms [30]–[33]. This
latter approach could prove to be useful, but preliminary at-
tempts by the authors demonstrated that the size of training
dataset and computational power needed for training is no-
tably larger than the ones required by the Diffspec method.
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