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Abstract—Identification of audio coding artifacts has a wide
range of applications, including encoder design, audio post-
processing, and quality assessment. In this paper, we focus
on identifying audio artifacts associated with (semi-)parametric
audio coding, particularly in the context of audio bandwidth
extension (BWE) schemes. The application of BWE can lead to
artifacts in the high-frequency target area that depend on the
crossover frequency and the characteristics of the signal. We
aim to identify on a frame-by-frame basis two common types of
artifacts: Tonality Mismatch (TM) and Unmasked Noise (UN).
To achieve this, we introduce a novel method for detecting these
artifact types, incorporating two key components into our model:
a spectral flatness measure and harmonic analysis of the signal.

Index Terms—bandwidth extension, artifact detection, spectral
flatness, harmonic analysis

I. INTRODUCTION

Modern perceptual audio codecs [1] designed for low bit
rate transmission employ coding tools that enable parametric
or semi-parametric representations of audio signals. In para-
metric representation, the audio waveform is conveyed through
a sparse set of parameters rather than temporal or spectral
samples [2]. These techniques often prioritize efficiency over
waveform preservation, leading to reconstructed waveforms
that may differ from the original. However, perceptually, the
reconstructed signal can closely resemble the original audio,
providing acceptable quality at very low bitrates [2]. The
non-waveform preserving nature of these coding schemes can
introduce audible artifacts in the reconstructed audio signal
when misused or overextended. We categorize these artifacts
into two main types: Tonality Mismatch (TM) and Unmasked
Noise (UN) [3], which will be discussed later in this article.
Identifying coding artifacts is essential to improve audio
quality, as it aids in encoder design, post-processing, and
understanding the limits of compression technologies [4]. Fur-
thermore, artifact detection can be applied in objective audio
quality assessment. Methods like PEAQ [5] provide an overall
score on a MOS [6] scale, but do not specify artifact locations.
The approach developed in this paper effectively identifies
these locations and classifies the signal frame according to
the artifact type.

II. THEORETICAL BACKGROUND

Bandwidth extension (BWE) techniques have been suc-
cessfully applied in perceptual audio coding at very low bit
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rates. Conventional codecs that do not utilize BWE techniques
are limited in the audio bandwidth they can transmit due to
insufficient bit availability. In contrast, BWE-enabled codecs
incorporate side information into the bitstream, allowing the
decoder to reconstruct the high-frequency spectrum from the
transmitted low-frequency components. Consequently, a full
reconstruction of the audio spectral bandwidth can be achieved
with a transmitted bandwidth as low as 4 kHz [7]. The starting
frequency for bandwidth reconstruction is called the crossover
frequency. One of the first BWE techniques is Spectral Band
Replication (SBR) [8], which was used in the MPEG-4 High
Efficiency Codec (HE-AAC) [9]. Some more advanced BWE
techniques include enhanced SBR [10] and Intelligent Gap
Filling (IGF) [11], schemes that are commonly used in the
state-of-the-art audio codecs.

The generation of artifacts resulting from BWE techniques
is influenced by the crossover frequency and the characteristics
of the input signal. In this paper, we consider the audio items
of the ODAQ data set [12], where the TM and UN artifacts are
generated as shown in [3], where the BWE technique used is
IGF. We further classify the two types of artifacts, tonality
mismatch and unmasked noise, by examining the spectral
properties of the signal. This subclassification is based on the
observation that the perceptual quality of the reconstructed
signal varies depending on the copied content. In the following
paragraph, we identify the scenarios in which these artifacts
are generated. Figure 1 illustrates the spectrogram representa-
tion of the different types of artifacts, the different time and
frequency ranges are selected so that the artifacts are clearly
visible.

Noise Substitution (NS) : If the original audio stimulus
contains tonal components in the high-frequency spectrum, but
the reconstructed signal appears noise-like at those frequen-
cies, artifacts resulting in a noisy sound occur. This noise-like
high-frequency spectrum may arise from copying noise-like
sections from the original signal’s low-frequency spectrum
or from replacing the high-frequency portion with random
noise while preserving the spectral envelope. For signals with
a dense harmonic structure in the high frequencies, noise
substitution can cause significant distortion, particularly if the
crossover frequency is low. However, if the high-frequency
components in the original signal lack harmonic structure, the
perceptual impact of noise substitution is less pronounced.
Our algorithm distinguishes between noise substitutions with
severe and mild effects. Figure 1(a) illustrates this artifact,
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where the tonal components have been replaced by noise.
Exaggerated Tonality (ET) : The original audio stimulus

lacks tonal components in the high-frequency range but con-
tains tonal components at low frequencies. In contrast, the
reconstructed signal exhibits tonal components in the high-
frequency range. In this context, the high-frequency section of
the reconstructed signal becomes excessively tonal, resulting in
artifacts that sound perceptually rough. Figure 1(b) illustrates
this artifact, showing sharp horizontal lines in the recon-
structed spectrum, which represent the low-frequency tonal
components that have been copied to the high frequencies.

Harmonicity Mismatch (HM) : Both the original and
reconstructed signals exhibit tonal characteristics, with a
strong harmonic structure present throughout the spectrum.
The copying of tonal components from the low-frequency
region to the high-frequency segment disrupts the harmonic
continuity in the reconstructed signal. When tonal components
are placed too closely together in the high-frequency range,
it leads to modulation or beating artifacts. This artifact is
illustrated in Figure 1(c), where the difference in harmonic
continuity between the reference and reconstructed signals can
be observed.

Harmonicity Mismatch with Noise Filling (HMNF): The
original signal maintains a harmonic structure throughout
the spectrum, while the reconstructed signal preserves this
harmonic structure, but introduces noise-like components in
the high-frequency range. This effect typically arises in signals
with a higher fundamental frequency. As these components are
copied into the high-frequency spectrum, a noise-like substi-
tution occurs among the harmonic elements. This artifact is
illustrated in Figure 1(d), where noise is interspersed between
the tonal components.

Fig. 1. Spectrogram representation of various artifact types. Each artifact
shown with the original signal spectrum on the left side and the degraded
spectrum on the right.

III. DETECTION ALGORITHM

In the previous section, we discussed the types of artifact,
highlighting two primary factors that influence the effect of

copying components from the lower to the higher frequency
range of the spectrum. The first factor is the harmonic structure
of the original signal. The second factor is the nature of the
substitution in the high-frequency range, specifically whether
it involves the substitution of noise or tonal components.

To model the two factors, we have utilized two features.
The combination of both allows us to classify the audio signal
frame into artifact type. In the next section, we describe how
these features are calculated and used in classification.

A. ERB-Based Spectral Flatness Measure

The Spectral Flatness Measure (SFM) [13] can be used to
quantify whether an audio signal is tonal in nature or noise-
like. The SFM value ranges from 0 to 1, where a pure tonal
signal has an SFM value of 0, and a pure white noise signal
has an SFM value of 1. When comparing the SFM values of
a reference signal and its coded version, if the SFM of the
coded signal is less than that of the reference signal, it can be
interpreted as the coded signal being more tonal compared to
the reference. Conversely, if the SFM of the coded signal is
greater than that of the reference, it indicates that the coded
signal has become noisier than the original signal. In our case,
we calculate the SFM for each time frame and for each of
the 64 Equivalent Rectangular Bandwidth (ERB) bands. The
grouping of the linear frequency bins into ERB bands is done
based on the center frequencies of the ERB as shown in [14].
We refer to the method for calculating SFM for ERB bands
as ERB-Based SFM (ESFM).

Figure 2 (a) presents the block diagram for the calculation
of the ESFM feature. The discrete time-domain windowed
signal x(n) is transformed into the frequency domain using
the Modified Discrete Cosine Transform (MDCT) [15], as
described by the equation:
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where the transform length N is 512 and k is the frequency
index, which ranges from 0 to 511. The window function we
consider is a sine window with 50% overlap. The transform
used here to convert from the time domain to the frequency
domain is the MDCT, which is commonly employed in state-
of-the-art audio codecs. For each time frame, the MDCT
coefficients are grouped according to the number of frequency
bins corresponding to each ERB band. At low frequencies,
the frequency resolution for the ERB bands is quite narrow.
In cases where the number of frequency bins is less than 6,
we group the MDCT coefficients of 5 consecutive frequency
bins corresponding to the ERB band. After grouping the
coefficients, we compute the entropy-based SFM [16] for the
ith ERB band according to (2)

ESFMi = 2−
∑P−1

m=0 X(m)i · logP X(m)i − 1 (2)

where X(m) is the normalized MDCT coefficient such that
the sum of the coefficients for the ith band is 1, and P is the
number of coefficients in the ith ERB band. We do not use
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the classical definition for calculating flatness due to the issues
outlined in [16]. Instead, the entropy-based method provides
better results and greater distinction between tonal and non-
tonal regions in a signal.

B. Harmonic Analysis

To evaluate the strength of the harmonic structure within the
signal, we perform a harmonic analysis. Harmonic components
are identified in the spectrogram of the audio signal by
horizontal lines, while vertical lines typically correspond to
percussive elements [17]. To quantify the strength of the
harmonics in the higher frequency spectrum of a signal, we
propose a feature called Harmonic Spread (HS). Harmonic
Spread for any time frame is defined as the ratio of the number
of harmonic peaks above the minimum crossover frequency
considered relevant for BWE schemes to the total number of
harmonic peaks. In our analysis, a threshold of 3 kHz is used
as the minimum crossover frequency for BWE applications.
We will later define what constitutes a harmonic peak.

Fig. 2. (a) ESFM calculation procedure (b) Harmonic Analysis procedure

Fig. 2 (b) shows the block diagram of how the feature is
calculated. The signal in the discrete time domain x (n) is con-
verted to its spectrogram representation X(j, k) by applying a
Short Time Fourier Transform (STFT), with transform length
of 2048 and hop size of 512. The window function used was
Hann.

After the calculation of STFT, harmonic and percussive
separation (HPS) is performed to generate masks according
to the algorithm presented in [18] and [19]. In this paragraph,
we provide a brief description of the algorithm. The magnitude
spectrogram is median filtered along both the horizontal and
vertical directions to obtain the harmonic-enhanced spectro-
gram H and the percussive-enhanced spectrogram P, respec-
tively. From the median-filtered spectrograms, soft masks are
generated for the respective components, as shown in [18].
Equation (3) illustrates how masks are calculated for an
arbitrary time frame index j and frequency index k; β is
referred to as the separation factor, as introduced in [19],
and p is the power to which each individual element of the
spectrograms H and P is raised. The mask values indicate the
extent to which each of the time-frequency bins belongs to the
respective component, with values ranging from 0 to 1. For our

experiment, the harmonic and percussive median filter lengths
are 7 and 25, respectively; β is 2 and p is 4.

MHj,k
=

Hp
j,k(

Hp
j,k + βPp

j,k

) (3)

To obtain a smoother representation of the mask values,
we applied median filtering to the mask MH for each fre-
quency bin, resulting in M

′

H. The mask values indicate the
proportionate strength of the harmonic components. We only
consider time-frequency masks with values greater than 0.65,
while all others are set to 0. This operation is implemented in
the thresholding block of Fig. 2 (b).

After thresholding is completed, we calculate the number
of harmonic peaks detected in each time frame. The harmonic
peaks are defined as the set of local maxima of the mask values
for each time frame, determined by comparing each value of
each sample with its neighboring samples. This operation is
executed in the Peak Picking block. The total number of peaks
for each frame is denoted by Htp, while the number of peaks
above the minimum crossover frequency is denoted by Hcp.
Finally, we calculate HS using the formula HS = Hcp/Htp.
For frames where the total number of peaks is less than 10, the
HS is set to 0. The harmonic analysis provides two outputs,
the harmonic spread and the total number of peaks for each
frame.

C. Frame Classification

Fig. 3. Artifact identification framework

We have developed features to identify artifacts in any given
frame, and incorporating all of these into a single framework
is illustrated in Fig. 3. x(n) and y(n) represent the discrete
reference signal in the time domain and the signal under test
(SUT), respectively. The frame classifier takes the output from
the Frame Additive Component (FAC) block as input. The
difference in harmonic spread between the two signals, defined
as (HSx − HSy), the harmonic spread of the reference
signal, and the harmonic peak ratio (HPR) are also fed as
inputs. HPR is defined as the ratio of the total number of
harmonic peaks in the original signal to those in the SUT,
expressed as Htp(x)/Htp(y).
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The FAC block assigns a label to each frame based on the
additive component introduced in the SUT. The difference in
ESFM values indicates whether the SUT is more tonal or
noisy because of the copying of spectral components. The
difference values for each frame are analyzed from the 37th

to the 59th ERB band, corresponding to a frequency range
of 3kHz to 16kHz. This region is selected because BWE
schemes operate primarily within this frequency range. Each
of these ERB bands is classified as tonal or noisy. Equation
(4) outlines the conditions for the classification of each ERB
band for an arbitrary time index j and the ERB band i,
where diff ESFMj,i represents the difference in ESFM
values between x(n) and y(n). A small threshold value γ
is introduced to ignore the ERB bands with very minimal
differences, with γ set to 0.05.

ERB labelj,i =


ERB tonal , if diff ESFMj,i > γ

ERB noisy , if diff ESFMj,i < −γ

No Label , otherwise
(4)

Once all the ERB bands are labeled for a frame, the final
output label of the FAC block for an arbitrary time frame j is
determined based on the conditions outlined in equation (5).
If the number of labeled ERB bands is the same for tonal and
noisy classifications, the label associated with the ERB band
exhibiting the highest difference in ESFM value is selected
as the FAC label output. Additionally, the overall additive
component must be present in at least 5 ERB bands to be
considered for artifact classification.

FACj =


Tonal, if #ERB tonal > #ERB noisy

Noisy, if #ERB tonal < #ERB noisy

ERB labelj,(max(diff ESFMj,i)), if same
(5)

In the final stage, the Frame Classifier block utilizes all the
features discussed above to classify the artifact. The difference
in HS values reflects how the high-frequency harmonic content
of the SUT deviates from that of the reference signal. A
moderate to large difference of HS values (greater than 0.2)
indicates a lack of tonal components in the high-frequency
region of the SUT. Additionally, if the FAC labels the frame
as ‘Noisy’, the artifact is classified as NS. If both the HS values
of the reference and the SUT are zero while the FAC block
output is ‘Noisy’, it suggests that noise components have been
added to the SUT. However, the perceptual impact of this noise
substitution is less severe compared to instances where tonal
components are replaced by noise. For frames that have a mild
effect of noise substitution we classify them as NS minor.

A large negative HS difference (greater than −0.2) indicates
the presence of tonal components in the high-frequency region
of the SUT. In such cases, if the FAC output for the frame
label is‘Tonal’, then it leads to two possible artifacts: HM
or ET. The harmonic spread of the reference signal is used
as a discriminating feature. If the HS of the reference signal
is zero, the artifact is identified as ET, since for ET artifact

TABLE I
SUMMARY OF FEATURE VALUES

HS diff FAC HPR HS (x) Artifact Type
> 0.2 Noisy – – NS
0 Noisy – 0 NS minor

|HS diff | <= 0.2 Noisy ≥ 1 – NS
|HS diff | <= 0.2 Noisy < 1 – HMNF
|HS diff | <= 0.2 Tonal – – HM

< −0.2 Tonal – 0 ET
< −0.2 Tonal – ̸= 0 HM

the reference signal does not show strong harmonic structure;
otherwise, it is classified as HM.

The magnitude of the HS difference is also influenced by the
crossover frequency. When the crossover frequency is around
3-4 kHz, the difference between the HS values is typically
greater compared to when the crossover frequency ranges
from 7-10 kHz. When the HS difference is small (with an
absolute value less than 0.2) and the FAC output is ‘Noisy’, it
becomes challenging to distinguish between noise substitution
at higher crossover frequencies and harmonicity mismatch
with noise-filling artifacts. In such cases, the HPR is used
as a distinguishing feature. Noise substitution artifacts usually
result in a significant reduction in the number of harmonics in
the SUT compared to the original signal, leading to an HPR
value greater than or equal to 1. In HMNF, since the harmonic
structure is maintained in the SUT, the HPR value will be less
than 1.

Table I summarizes how various feature values are used to
identify the type of artifact.

IV. EXPERIMENT AND RESULTS

To validate our algorithm, we tested it on the publicly
available Open Dataset of Audio Quality (ODAQ) [12]. From
this dataset, we selected items affected by TM and UN
artifacts. The items were generated for five different crossover
frequencies; however, we focus on presenting our results for
only two crossover frequencies (3kHz and 7kHz). At higher
crossover frequencies, audible artifacts are reduced.

To demonstrate the use of the artifact detection algorithm,
we created a custom audio file from the ODAQ dataset
containing all artifacts. All signals were down-mixed to mono
and sampled at 48kHz. The audio files considered include
“TM 02 violin”, “UN 20c accordion”, “TM Amateur”, and
“UN Creature”. The item names are prefixed with the artifact
type (TM, UN) as mentioned in [12]. Each segment is sep-
arated by 0.25 seconds of silence to clearly distinguish the
different sections and their associated artifacts. The spectro-
gram representation of the resulting reference signal is shown
in Fig. 4 (a), while Fig. 4 (b) displays the degraded version at
a crossover frequency of 3 kHz.

Fig. 4 (c) presents the results of the artifact detection
algorithm, where the graph shows the frames labeled with
specific artifact types. The HM and HMNF artifacts are shown
for the same audio excerpt i.e “TM 02 violin”. As a result of
which the first segment contains frame labels belonging to
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the HM and HMNF artifact types. We further categorize the
NS artifact by highlighting the severe and less severe noise
substitution, marked as NS and NS minor, respectively. This
distinction is validated by the higher average MUSHRA [20]
rating for “UN Creature” compared to “UN 20c accordion.”

For a higher crossover frequency of 7kHz, the resulting
signal can be seen in Fig. 4 (d). The results of the artifact
detection are shown in Fig. 4 (e). At these crossover frequen-
cies, the perceptual quality improves, resulting in fewer frames
being labeled with artifacts. This improvement in perceptual
quality is corroborated by the increased mean MUSHRA rating
of all individual items, as observed in [12].

Based on the dataset that we have used, the items affected
by TM artifact would be classified as HM, HMNF or ET; and
those affected by UN would be classified as NS or NS minor.
From the results, it can be seen that our algorithm incorrectly
classifies only a single frame of TM artifact as a UN one at
both the crossover frequencies.

Fig. 4. Framewise artifact identification of custom made audio file for
crossover frequency of 3kHz and 7kHz.

V. CONCLUSION AND FUTURE WORK

Our work introduces a novel approach for identifying
artifacts produced by bandwidth extension schemes, with a
further classification of these artifacts based on the spectral
structure of both the reference signal and the signal under
test. Our method effectively detects multiple distinct artifacts
within an audio file. In future work, this artifact identification
framework has the potential to be integrated into an objective

audio quality assessment system, thereby enhancing the
accuracy and reliability of the quality metric.
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