Timbre Transfer For Ship Radiated Noise
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Abstract—The objective of Underwater Acoustic Target Recog-
nition is to classify vessels based on their unique acoustic
signatures. Deep learning shows promise in UATR, but its
effectiveness relies on large and diverse datasets. Existing public
datasets like ShipsEar and DeepShip capture inter-ship but
lack sufficient intra-ship variability, e.g. varying operational
conditions. This limits the generalization and robustness of the
model. To address this, we propose a timbre transfer approach
using a hierarchical Vector Quantized Variational Autoencoder
to separate static timbre features from dynamic noise. By
incorporating ship-specific spectral characteristics with Adaptive
Instance Normalization, our method generates realistic, variably
conditioned acoustic signals, improving data augmentation, and
enhancing recognition algorithms for maritime surveillance and
environmental monitoring.

Index Terms—sonar, ship radiated noise, UATR, timbre trans-
fer, deep learning

I. INTRODUCTION

Ship-radiated noise is crucial in maritime applications such
as environmental monitoring and naval operations, where
it aids in identifying and classifying vessels using passive
sonar. However, accurately distinguishing ships in real-world
conditions is challenging due to the complexity of underwater
acoustics, including factors such as varying operational speeds,
environmental conditions, and background noise, which affect
the spectral characteristics of the noise. Underwater Acoustic
Target Recognition (UATR) has emerged as a key research
area, using machine learning and deep learning to identify
ships based on their acoustic signatures [1], [2]. Although
deep learning models have shown strong performance, their
generalization to varying operational conditions is hindered by
the lack of sufficient intra-ship variability, i.e., recordings of
the same ship under different conditions, in large-scale datasets
such as ShipsEar [3] and DeepShip [4].

Generative models, particularly style transfer techniques,
have shown success in both image and audio synthesis, ex-
celling at generating diverse data while preserving domain-
specific characteristics. Building on these advancements, this
work introduces a novel audio style transfer framework for
ship-radiated noise. By transferring the measured acoustic
signatures of real ships to a controllable simulation, we can
generate realistic, versatile ship noise data tailored to specific
conditions. This study investigates whether a hierarchical
Vector Quantized Variational Autoencoder (VQ-VAE) -based
timbre transfer framework can enhance ship noise synthesis
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and improve the generalization of deep learning models in the
UATR task.

We make three key contributions. First, we introduce a
timbre transfer framework that learns the residual between
simulated and real ship noise to improve realism. Second,
we develop a controllable parametric narrowband model for
adjusting key acoustic features like propulsion and propeller
behaviour. Third, we present the first baseline for timbre
transfer in underwater acoustics, paving the way for future
work in data augmentation and scene simulation.

II. RELATED WORK

Early ship radiated noise models relied on statistical and
physics-based approaches, such as Fourier synthesis and addi-
tive noise models, to reconstruct ship noise signatures [5], [6].
These methods, while useful, lacked adaptability to real-world
variations and could not generalize across diverse operating
conditions and sea regions. The lack of generalizability is also
stated in the UATR review by Hummel et al. [7].

Various architectures have been explored to improve classi-
fication performance, such as the contrastive learning approach
of Xie et al. [1] or the joint model of Tian et al. [2]. However,
while the publicly available datasets capture inter-ship variabil-
ity (differences between ships), they lack intra-ship variability
(recordings of the same ship under different conditions). This
limits the generalization of the model, making adaptation to
varying speeds, loads, and environments challenging for real-
world UATR applications.

Generative models have advanced in audio processing, with
techniques such as style transfer enabling the transformation
of sound sources while preserving acoustic features. Notable
methods include RAVE by Caillon and Esling [8] and DDSP
by Engel et al. [9]. However, because of the stochastic and
nonharmonic nature of ship radiated noise, these approaches
face challenges when applied to ship radiated noise.

In underwater acoustics, Generative Adversarial Networks
(GANs) and Variational Autoencoders (VAEs) have been
explored for data augmentation and improved recognition
performance. GANs have been widely utilized to generate
time-frequency representations for ship radiated noise [10],
[11], with Ashraf et al. introducing AN-GAN to enhance the
signal-to-noise ratio [12]. However, these methods rely on
spectrogram-based representations, which require transforma-
tions back to the time domain, which is non-trivial due to
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the lack of phase information. Accurate phase reconstruction
is crucial in this application, as phase carries fine-grained
temporal details and that are essential for accurately preserv-
ing multipath propagation and Doppler effects, for instance.
Changing towards raw waveform generation, Atanackovic et
al. [13] used GANs to model ship radiated noise, and Li et al.
[14] proposed a GAN-based approach to generate realistic ship
noise. Qiu et al. [15] explored VAEs and autoregressive models
to generate radiated ship noise, introducing cross-domain pre-
training and controllable noise synthesis.

These advancements highlight the potential of generative
models for ship radiated noise synthesis. However, these
methods struggle to integrate controllability over operating
conditions with the objective of enriching variability. We there-
fore propose a solution by providing controllable variability
with a deterministic simulation, while preserving authenticity
using a style transfer approach.

III. METHOD

This section presents the proposed framework for ship-
radiated noise synthesis, built on a Vector Quantized Varia-
tional Autoencoder (VQ-VAE) with Adaptive Instance Nor-
malization (AdaIN) to match the simulation output features
with the style reference. Our approach uses a two-stage
training process focusing on content preservation and style
adaptation respectively: First, the model reconstructs simulated
content signals, and second, it transfers real ship noise char-
acteristics onto these signals. The following subsections detail
the core components of the method, including the architecture
and training procedure.

A. Adaptive Instance Normalization

Our approach builds on the adaptive instance normalization
proposed by Huang et al. [16], which matches the feature
statistics of arbitrary reference inputs to a given content input.
This work is based on the observation made in [17], [18],
where the authors demonstrate that style characteristics can
be described using feature statistics. Although AdaIN has
been successful in image tasks, its application to audio is
limited. In [19], the authors use AdaIN in the audio domain
for spectrogram-based disentanglement of speech content and
emotion. The authors in [20] successfully extended Adaln to
raw waveforms for speech conversion tasks. The RAVE model
[8] also applied AdaIN to raw waveform inputs. In our work,
we extend AdalN to ship noise synthesis, using the output
of the deterministic simulation as the content, and samples
from the DeepShip dataset as the style references. The stylized
content feature ¢ using AdalN is determined by normalizing
the features of the content signal z(c) to the features of the
style reference z(s), where z represents the latent vector and
s and c are the style and content signals, respectively by

Hers) = o (2 (s)) (W) Fal(s) )

The latent content representation is normalized and scaled
by the spatial-wise mean p and standard deviation o of

the style representation, where ¢ corresponds to the stylized
content feature.

B. Architecture

The core architecture is inspired by the VQ-VAE archi-
tecture from Oord et al. [21] and the hierarchical structure
presented in [22], where the intuition is for the lower levels
to capture style and texture, while higher levels focus on
semantic features. This structure naturally supports style-
content separation, as suggested in [16], and enhances signal
fidelity. The encoder and decoder architectures are similar
to the model presented by Dhariwal et al. [22], which is
known for processing raw waveforms in a VQ-VAE setup.
As ship radiated noise is characterized by transient and long-
term acoustic patterns, we inspired our model setup by the
Open Al hierarchical Jukebox model which is able to captures
both local and global features. The encoder and decoder use
stacked residual layers with smooth down- and upsampling to
minimize aliasing artifacts. Combining the strengths of [16],
[22], this architecture effectively handles raw waveform-based
style transfer. The proposed architecture is shown in Figure 1.

The content signal and style references are input to the
encoder as one-dimensional raw waveforms. Following [22],
we use decoupled encoders to map inputs to different compres-
sions to emphasize capturing short and long term context at
the different hierarchy layers. However, applying the nested
encoder structure from [23] led to insufficient information
flow to deeper layers, as early encoders overfit. Both content
and style signals are encoded using residual 1D convolutional
layers. After encoding, content features z; (¢) are normalized
and scaled to style features z; (s) via the AdaIN layer. Vector
quantization begins with high-level features (£ in Figure 1).
The stylized feature vector ¢; (¢, s) is mapped to the nearest
codewords in the codebook C;. These quantized features are
decoded to the next lower layer (Ej), added to the stylized
features, and the process repeats for each hierarchy level. The
lowest-level decoder combines and maps features back to the
original input dimension.

C. Training

Our training follows the two-stage approach from Huang et
al. [16]. In the first stage, we pretrain our hierarchical VQ-VAE
to reconstruct simulated ship noise, creating a latent space that
encodes key acoustic properties. In the second stage, a training
scheme similar to the original AdaIN approach [16] is used
to align the characteristics of generated noise with real-world
ship recordings.

In the first phase, encoders map the raw waveform into a
scaled quantized latent space which is decoded back to the
original signal dimensions and evaluated using a reconstruc-
tion loss. The training objective includes a time-domain L1
loss for fidelity and phase preservation, alongside a spectral
convergence loss to ensure accurate frequency bin reconstruc-
tion. This phase establishes a structured latent space for the
subsequent style transfer.
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Fig. 1: Proposed hierarchical architecture for time domain timbre transfer using adaptive instance normalization and vector
quantization. In our work we utilize an analogous three-level hierarchy.

In the second stage, the pre-trained encoders and codebooks
are frozen. The combined decoder (shown in blue in Figure
1) is trained using a weighted loss function that combines
content- and style-based losses. The weighted loss is defined
by L = L.+ AL, where L resembles the total loss, L. the
content based, L the style based loss which is weighted by the
factor given by A. The content loss L. is the Euclidean distance
between the encoded content features z; (c)and the encoded
features of the output signal z; (§). The distances are simply
added for every ¢-th hierarchical layer, where L represents the
total number of levels. The style loss matches the statistics of
the style features to the content features. Therefore, the L1
loss of the mean p and the standard deviation o in different
intermediate encoding layers ¢ is calculated by

(c) ll2
— p (i (3)) |2 2)

;
Z 1o (i (9) = o (¢ (s)) ll2

where the index j represents the layer index of the K
intermediate encoder outputs.

IV. EXPERIMENTS

We employ a three-level hierarchy compressing the input
waveform by 1/4, 1/8, and 1/16, ensuring sufficient recon-
struction despite some high-frequency artefacts. Higher com-
pression ratios led to reconstruction collapse during training.

For the content data we model 1000 ships with random con-
figurations (in terms of propeller blades, cylinders, stroke, gear
ratios, harmonics, amplitudes, and phase offsets) according to
the frequency relations outlined in [24]. Each fundamental fre-
quency is accompanied by an additive harmonic set. For each
ship 20 three-second recordings at 16 kHz with constant crank

shaft ratios are generated. This method simplifies the process
while effectively capturing the essential characteristics of ship-
radiated noise in a controlled manner. We choose a signal
length of three seconds as it is long enough to capture the
minimal expected frequency of 1 Hz multiple times. The style
reference comes from DeepShip [4], sampled at 16 kHz and
split into non-overlapping 3 s frames. Training, validation, and
testing use ship-wise separated hold-out sets in a 0.7/0.2/0.1
ratio. Random Gain and Polarity Inversion augmentation help
prevent overfitting. Mixing typical low-frequency signals with
high-frequency simulated signals improves high-frequency en-
coding, ensuring harmonic frequencies reach up to 6 kHz. For
all training stages, the Adam optimizer (Ir = 0.001, linear
decay 0.1 over 20 epochs) was used.

V. EVALUATION

Generative models are evaluated using either qualitative
metrics like the Mean Opinion Score (MOS) or quantitative
measures. In style transfer tasks, the focus is on balancing
content preservation and style adaptation. To evaluate our
timbre transfer framework, we conduct experiments across two
key aspects. Spectral Fidelity: How closely does the syn-
thesized ship noise match real-world spectra? We assess this
using qualitative waveform analysis and logarithmic spatial
distance (LSD). Content Preservation vs. Style Adaptation:
Does the model maintain narrowband components from the
simulated input while adapting the broadband structure of the
style reference? We introduce a masked frequency ratio (MFR)
to compare the preservation of the harmonic frequencies of
the input along additional correlation analysis to compare the
global structure.

A. Qualitative Evaluation

We analyse content preservation and style adaptation by
expecting a combination of broadband style characteristics
with narrowband content components. Figure 2 shows the
spectrograms of the generated mixtures given different con-
tent and style references. It can be seen that the proposed
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approach is able to preserve most of the harmonic structure
in the generated signals. Generally, the preservation of higher
frequencies is more stable than for low frequency (see B-I). A
reason for this might be the large receptive fields required for
low frequencies when handling raw waveforms. Additionally,
when providing a single sine wave (II) the model automatically
outputs corresponding harmonic frequencies, indicating that
the model learns and assumes an intrinsic harmonic structure
for given inputs. The two examples from the validation set
A and B show that the model adapts to the narrowband
characteristic of the content input and to the broadband char-
acteristic of the style reference. The examples for C and D
demonstrate the suppression of content-like frequency lines
from style references, as artificially added frequency lines and
chirp signal are fully suppressed in the generated output. The
generated samples for the style reference E shows that the
model fails to transfer amplitude variations, such as fading
and short time bursts to the output. However, we expect that
thus issue can be addressed with directed augmentations. The
examples for the style reference F show that the model is
able to generalize to unseen style references to some extent,
nonetheless the results still differ in the general broadband
structure. However, it is important to note that the sample
from the ShipsEar has a higher low frequency energy density
compared to the DeepShip samples, indicating a difference in
the data distribution.

B. Quantitative Evaluation

We quantitatively assess content preservation, style adap-
tation, and spectral fidelity by calculating reconstruction
loss with a pre-trained autoencoder on style data from the
DeepShip dataset. The autoencoder learns to reconstruct the
stylized signals. A low reconstruction loss for the gener-
ated samples indicates alignment with realistic ship noise.
We compare time-domain L1 and spectral distance measures
between content and style signals. Table I reports recon-
struction differences via median, Inter Quartile Range (IQR),
skewness, and kurtosis. The temporal L1 distance shows the
generated signals align more closely with the style reference
than the content signal, demonstrating strong style adaptation.
The L1 distribution further supports this alignment in time-
domain characteristics. In the spectral domain, Log Spectral
Distance shows similar medians but differing skew, indicating
broadband and narrowband alignment. Despite some frequency
variations, overall spectral characteristics remain comparable.
The largest difference appears in Spectral Convergence, dis-
tinguishing content from style, though the generated signals
align well with style, showing minimal deviations.

Next, we quantify content preservation using a masked
frequency ratio. The narrowband spectral lines of the content
signals are well-defined due to deterministic simulation. As
the content lacks a broadband component, a precise frequency
mask which filters only the narrowband lines is determined.
This metric evaluates how well these frequency lines are
preserved in the generated signal by comparing their relative

TABLE I: Deviation of reconstruction loss distribution com-
pared to style reference for temporal and spectral L1 loss,
as well as the Log Spectral Distance (LSD) and Spectral
Convergence (SC). Lower Values are better.

median IQR skewness  kurtosis

L1 (temp.) content -0.002  -0.056 0.404 1.888
generated 0.000  0.007 0.091 0.161

LSD content 0.397  -0.288 2.746 15.463
generated -0.135 0.065 0.399 -0.749

e content 1.407 0.416 0.788 11.258
generated 0.025 0.015 -0.539 -2.135

magnitudes. The Masked Frequency Ratio (MFR) can there-
fore determined by

— Zk fmask:,k: | ]:(@) |k
Zk fmask:,k | -F(C) |k

where fy,qsk 1 describes the masked spectrum for the k-th
narrowband component. This metric outputs 1.0, when all
the masked frequency magnitudes in the generated signal
1y match the masked frequency magnitude of the content
signal c. Additionally, the similarity between the content and
generated time-domain, as well as spectrum are evaluating
using the Pearson’s correlation factor o¢emp and o f.cq. Table
II displays the content preservation metrics for the four test
signals, white noise, pink noise, style and the generated
outputs.

MFR

3)

TABLE II: Evaluation of the content signal preservation be-
tween the style reference and the generated outputs in terms
of the mean MFR over the test set alongside the correlation of
the time domain signal and corresponding spectrum. Higher
Values are better.

correlation (temp.)  correlation (freq.)

MFR
Otemp O freq
style | 0.122 0.000 0.244
generated | 0.358 0.380 0.533

Table II shows the highest MFR and correlation factors for
the generated signals. In the time domain, none of the signals
correlate with the content signal, but the best frequency-
domain correlation is with the style reference. The highest
MFR for the generated signal is 0.358, indicating some
content loss during style transfer. Improving content preser-
vation requires balancing with style adaptation, which can
be achieved through stronger content loss penalization. The
results demonstrate that our method effectively transfers real-
world spectral characteristics to simulated ship noise while
preserving its structure.

VI. CONCLUSION

In this work, we present a novel approach for generating
realistic and authentic ship-radiated noise by refining a de-
terministic and controllable simulation with real-world data.
Using a hierarchical VQ-VAE model combined with Adaln,
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Fig. 2: Roman numerals I and II show a simulated content signal and a 600 Hz sine wave. Style references A-F include
various examples: A and B are DeepShip samples, C—E are modified versions of B with added sine, chirp, and noise effects,
and F is a sample from the ShipsEar dataset. Intersections of content I, II with styles A-F display the generated outputs.

our method effectively transfers the spectral characteristics of
real ship noise to the simulated content. To our knowledge,
this work that investigates style transfer for ship radiated noise
synthesis, offering an innovative framework that can serve
as a foundation and benchmark for future research. Through
both qualitative and quantitative evaluations, we demonstrate
the model’s ability to preserve key features of the original
content signal while adapting the broadband structure to real-
world ship noise. Despite some limitations in low-frequency
preservation, the model successfully replicates the overall
spectral characteristics and texture of ship-radiated noise. The
results emphasize the tradeoff between content preservation
and style adaptation, suggesting that refining content loss
penalization could further enhance the model. Overall, this ap-
proach provides a strong starting point for generating realistic
ship noise.
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