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Abstract—Accurate simulation of wave propagation in complex
acoustic materials is crucial for applications in sound design,
noise control, and material engineering. Traditional numerical
solvers, such as finite element methods, are computationally
expensive, especially when dealing with large-scale or real-time
scenarios. In this work, we introduce a dataset of 31,000 acous-
tic materials, named HA30K, designed and simulated solving
the Helmholtz equations. For each material, we provide the
geometric configuration and the corresponding pressure field
solution, enabling data-driven approaches to learn Helmholtz
equation solutions. As a baseline, we explore a deep learning
approach based on Stable Diffusion with ControlNet, a state-of-
the-art model for image generation. Unlike classical solvers, our
approach leverages GPU parallelization to process multiple simu-
lations simultaneously, drastically reducing computation time. By
representing solutions as images, we bypass the need for complex
simulation software and explicit equation-solving. Additionally,
the number of diffusion steps can be adjusted at inference time,
balancing speed and quality. We aim to demonstrate that deep
learning-based methods are particularly useful in early-stage
research, where rapid exploration is more critical than absolute
accuracy.

Index Terms—acoustic material, helmholtz equation solver,
data-driven, diffusion.

I. INTRODUCTION

The Helmholtz equation provides a fundamental mathe-
matical framework for modeling steady-state wave behavior
in complex acoustic materials, enabling the prediction of
sound pressure fields under different configurations. However,
solving the Helmholtz equation numerically is computationally
expensive, particularly for high-resolution simulations or real-
time applications [1].

Traditional numerical methods, such as the finite element
method (FEM) and finite difference method (FDM), provide
accurate solutions but require significant computational re-
sources, making them impractical for large-scale or inter-
active applications. Recent advancements in deep learning
have shown promise in accelerating acoustic [2], [3] and
physics-based simulations by learning data-driven mappings
between material configurations and their corresponding phys-
ical responses. Such approaches have been explored in fluid
dynamics [4], heat transfer [5], and electromagnetism [6],
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Fig. 1. Samples from the HA30K dataset. The red dot represents the sound
source location. Black squares represent the obstacles.

but their application to acoustic wave propagation remains
relatively underexplored.

In this work, we introduce the Helmholtz Acoustic 30K
(HA30K) dataset, designed to bridge the gap between com-
putational acoustics and deep learning. The dataset consists
of 31,000 2D acoustic material configurations generated us-
ing FreeFEM, a finite element solver for partial differential
equations. Each sample includes a square domain with one
to six square obstacles, each made of different materials such
as rubber, wood, or metal. The acoustic source is modeled as
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a Gaussian source, randomly placed within the non-occupied
regions of the domain. For each configuration, we provide both
the material distribution image and the corresponding pressure
field p solution obtained by solving the Helmholtz equation.
Some examples are depicted in Figure 1. The dataset can be
downloaded from Zenodo'.

The Helmholtz equation, which governs the steady-state
behavior of acoustic waves, depends on key parameters such as
the wave number k, which encapsulates frequency and material
properties, and appropriate boundary conditions to account for
wave reflections and absorptions. In our dataset, we enforce
conditions that simulate real-world wave interactions, includ-
ing absorbing boundaries to prevent artificial reflections and
Dirichlet conditions on obstacles to model rigid surfaces. The
resulting pressure fields provide a rich representation of wave
propagation patterns across different material configurations.

To evaluate the potential of deep learning for acoustic
simulation, we use as a baseline Stable Diffusion with Con-
trolNet, since diffusion models have demonstrated excellent
capabilities in generating high quality images [7]. We trained
the model to generate accurate pressure field predictions from
material configuration images, offering a fast and data-driven
alternative to conventional numerical solvers.

This paper aims to provide a benchmark for future research
in applying deep learning to acoustic material simulation.
By releasing our dataset and baseline models, we hope to
inspire further exploration of deep learning-driven solutions
for computational acoustics, enabling faster and more scalable
simulations for real-world applications.

Our contribution can be summarized as follows:

e We introduce a novel dataset of 31,000 2D acoustic
material configurations, including pressure field solutions
obtained using FreeFEM.

e We test our dataset on a baseline model derived from
Stable Diffusion with ControlNet to predict Helmholtz
equation solutions from material configurations.

o We perform an evaluation based on some of the most
common objective metrics for image quality estimation
and a comparative analysis between traditional numerical
solvers and deep learning-based approaches, highlighting
their advantages and limitations for acoustic wave simu-
lation.

The rest of the paper is organized as follows. Section II
presents the related works, Section III the proposed dataset
structure, while in Section IV we discuss the baseline model
and we validate the obtained experimental results. Finally,
conclusions are drawn in Section V.

II. RELATED WORKS

Deep learning has emerged as a powerful tool for advancing
the design and analysis of complex materials, including acous-
tic materials. Recent studies demonstrate the potential of gen-
erative models and deep learning-based inverse design tech-
niques in discovering novel material properties and structures.

Thttps://zenodo.org/records/15683385

Diffusion models, in particular, have gained popularity as
physics-informed approaches capable of generating physically
plausible designs while maintaining computational efficiency
[8], [9]. These methods have been successfully applied to
inverse-design tasks for nonlinear mechanical metamaterials
and multi-modal resonant structures [10].

For acoustic materials, deep learning has proven effective
in optimizing surfaces for sound absorption. Different studies
have used machine learning techniques to design materials
with high degrees of freedom [11], [12], enabling the auto-
mated discovery of novel acoustic structures. The application
of inverse design has also extended to phononic crystals and
multishape metamaterials, allowing for tailored wave propa-
gation characteristics [13], [14].

In wider terms, advancements in data-driven methods have
demonstrated the feasibility of using deep learning to optimize
materials for specific mechanical, optical, and electromagnetic
properties [15]-[18]. Several works have explored deep learn-
ing as a tool for accelerating the discovery of new material
configurations, facilitating rapid generation and evaluation of
candidate structures [19], [20]. Notably, generative models
have been employed for mechanistic-based learning and on-
demand inverse design of metamaterials, highlighting the
increasing role of deep learning in material science [21], [22].

Building on this foundation, our work presents a dataset
of simulated acoustic materials designed using the Helmholtz
equation, providing a benchmark for evaluating deep learning-
based methods for acoustic simulation. Unlike previous studies
focusing on specific material categories or optimization tasks,
our dataset aims to facilitate the development of generalizable
models capable of predicting acoustic wave behavior in diverse
material configurations.

ITII. HA30K DATASET

In this section, we introduce the HA30K dataset—a collec-
tion of 31,000 numerical samples derived from solutions of
the Helmholtz equation. These samples capture a wide range
of acoustic scenarios, making the dataset a valuable resource
for research in wave propagation, numerical simulation, and
machine learning applications in acoustics. All numerical
solutions were computed using FreeFEM, a open-source high-
level multiphysics finite element solver.

A. Theoretical Background

The propagation of acoustic waves is modeled by the
Helmholtz equation. In its strong form, the equation is given
by

Ap+Fkp=f inQ, (1)

where p denotes the pressure field, k£ is the wave number,
and f is a given source term. To ensure a well-posed problem,
we impose boundary conditions, such as the Sommerfeld radi-
ation condition on the boundary of the domain I';, representing
the boundary of the domain :
9p

— —ikp=0 onTIy, 2)
on
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Fig. 2. An example showing the possible locations of the sound source given
the position of obstacles (in blue).

and a Robin boundary condition on obstacle surfaces
Dobstactes:
Ip

n +1iZp =0 on Iopstactes, 3)

where Z is the impedence parameter. For numerical simu-
lations, we derive the weak formulation by multiplying the
strong form by a test function ¢, integrating over the domain
), and applying integration by parts. The resulting weak
formulation is:

/(Vp~Vq—k:2pq)dac + /fqu
Q Q

Weak formulation of the Helmholtz eq.

— / ikpqgds
Iy

—————

Sommerfeld boundary condition

Gaussian source

b

Robin boundary condition

1Zpgds =0.

obstacles

The Sommerfeld condition is imposed to simulate free
radiation (i.e., to avoid reflections at the domain boundaries),
while the Robin condition on obstacles models impedance
effects. By varying the parameter Z, we can simulate different
obstacle materials (i.e., Z = 150 for foam, Z = 600 for
rubber, Z = 1500 for wood, Z = 1 x 108 for metal).

B. Domain definition

The generation of each sample in the HA30K dataset
involves the definition of the domain and its characteristics.
The domain is a unit square discretized with a 256x256 mesh.
Within this domain, the speed of sound c is set according to
the material properties of the medium, influencing the wave

TABLE I
SPEEDS OF SOUND ¢ GIVEN DIFFERENT DOMAIN MATERIALS.

Material Speed of sound (m/s)
Rubber 60
Air at 20°C 343
Lead 1210
Gold 3240
Glass 4540
Aluminum 6320

propagation characteristics. Table I summarizes the values of
c given the different materials. Similarly, the frequency of the
sound source can have a value between 100 and 4000 Hz
(with increments of 100 Hz). Additionally, obstacles are mod-
eled as squares and are randomly placed in non-overlapping
configurations. Their dimensions are sampled from the interval
[0.1,0.4] (with a step of 0.05) and their number varies from 1
to 6. Larger obstacles are assigned a higher probability when
the total number of obstacles is lower, where on average 32%
of the domain surface occupied by obstacles. This flexible
domain setup enables the simulation of a wide range of
acoustic scenarios.

C. Implementation with FreeFEM

FreeFEM was employed to solve the weak formulation of
the Helmholtz equation using the finite element method. Its
flexibility allowed us to incorporate complex boundary condi-
tions and heterogeneous material properties, thereby enabling
the generation of a large number of simulations under varying
physical and geometrical configurations. The solution p to the
Helmholtz equation is complex-valued. For each simulation,
the results are stored as a set of values [X, Y, Re(p), Im(p)].
From the distribution of obstacles we derive the source images
of the dataset, which represent with black pixels the obstacles
and with white pixels the free portion of the domain. For
the target images, we convert the real component of the
pressure field (Re(p)) into RGB images by applying the viridis
colormap from matplotlib. The resulting dataset consists of
31,000 pairs of source and target images, each with dimensions
of 256x256 pixels.

IV. EXPERIMENTAL RESULTS
A. Baseline

As a baseline for evaluating the effectiveness of deep learn-
ing methods in predicting the Helmholtz equation solutions,
we employ Stable Diffusion with ControlNet [23]. We use
official repository, available on GitHub ? and the provided
checkpoints. The model is trained on our dataset, which is
split into training (80%), validation (15%), and test (5%) sets.

The input to ControlNet consists of the image representing
the material domain, which includes the surface and obstacles,
providing spatial information about the acoustic environment.

Zhttps://github.com/lllyasviel/ControlNet
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Fig. 3. Baseline architecture: The baseline architecture takes the topological structure of the domain along with a textual description of the acoustic properties
and outputs an estimate of the pressure field. The target is the pressure field obtained by solving the Helmholtz equation.

Additionally, global parameters such as frequency, material of
the surface, material of the obstacles, number of obstacles,
frequency, and position of the sound source are encoded as a
single text string having structure: “The material is made of
{material_domain}, has {num_obstacles} obstacles made of
{material_obstacles}. A sound source is located in (x={s,},
y={sy}) having frequency {source_freq} Hz”. The text string
is used as cross-attention conditioning for the model. The tar-
get is the 256x256 pixel image derived by the real components
of the pressure values Re(p), as resulted from the simulations.

During training, the Stable Diffusion weights remain frozen,
and we train only the ControlNet parameters to adapt the
diffusion process to our specific dataset. This setup ensures
that the model learns to generate pressure field solutions while
leveraging the powerful generative capabilities of diffusion
models. A block diagram of the baseline architecture is
proposed in Figure 3.

The model is trained on a single 48 GB Nvidia RTX A6000.
During training, we used a batch size of 4 with a learning rate
kept fixed at 1e — 5 for a total of 100k diffusion steps, where
each step is defined by 1000 timesteps. We use the Stable
Diffusion 2.1° checkpoint and we keep the model frozen,
training only the ControlNet parameters. Consequently, we use
the original values for all other hyperparameters of the model.

B. Objective Evaluation

To demostrate the performance of the baseline used to test
our dataset in predicting the solutions of the Helmholtz equa-
tion, we employ the following objective evaluation metrics:

e Mean Squared Error (MSE): this metric measures the
average squared difference between the predicted and
ground truth pressure field images. A lower MSE in-
dicates a higher accuracy in the reconstruction of the
pressure distribution.

o Fréchet Inception Distance (FID): FID compares the
statistical distribution of generated and real images in a
feature space extracted from a pre-trained neural network.

3https://huggingface.co/stabilityai/stable- diffusion-2- 1-base/tree/main
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Fig. 4. Speedup obtained using parallel calculation with our baseline

compared to sequential simulations with FreeFEM.

Lower FID values indicate that the generated pressure
fields are perceptually closer to the ground truth.

o Structural Similarity Index Measure (SSIM): SSIM as-
sesses the perceptual similarity between predicted and
reference images by considering luminance, contrast,
and structural information. Higher SSIM values indicate
better structural preservation in the generated pressure
fields.

These metrics provide a comprehensive evaluation of both

numerical accuracy and perceptual quality for the acoustic
material simulations.

C. Discussion

The results of our study highlight the potential of deep learn-
ing methods for accelerating material simulations, particularly
for pressure field estimation using the Helmholtz equation.
Traditional numerical solvers, such as FreeFEM, while highly
accurate, require high computational costs and have limited
scalability, as each simulation must be performed sequentially.
In contrast, deep learning models allow for parallelized infer-
ence, leveraging batch processing and multi-GPU acceleration
to significantly reduce computation time.
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TABLE II
OBIECTIVE EVALUATION FOR DIFFERENT SAMPLING STEPS

Sampling steps | FID | | SSIM 1 | MSE |

20 53.31 0.657 0.1156
50 40.93 0.662 0.1290
75 43.62 0.669 0.1163

Generating high-quality, labeled data is a fundamental step
toward making this kind of methods a viable alternative to
traditional solvers. By providing a dataset of 31,000 simulated
materials, each with its corresponding pressure field solution,
we enable the training and evaluation of data-driven models
capable of learning complex physical relationships.

To assess the efficiency of our approach, we evaluated the
performance of our model using the DDIM sampler with
different batch sizes (1, 3, 5, 10, and 25) and various sampling
steps (20, 50, 75, and 100). Our analysis demonstrates that
the generated pressure fields maintain high fidelity to the
ground truth, as indicated by the objective evaluation metrics
(MSE, FID, and SSIM) reported in Table II. We observed
that increasing the batch size and optimizing the number of
sampling steps allows for a significant reduction in inference
time while maintaining competitive accuracy, as shown in
Figure 4.

By parallelizing inference and tuning sampling parameters,
our approach enables rapid and scalable material simulations,
making it a viable alternative for large-scale acoustic material
analysis. Furthermore, our dataset can be used as a benchmark
for future research.

V. CONCLUSIONS

In this work, we introduced the HA30K dataset, a dataset for
deep learning-based acoustic material simulation, specifically
addressing pressure field estimation via the Helmholtz equa-
tion. By leveraging deep generative models, we demonstrated
the advantages of using data-driven approaches instead of
traditional numerical solvers to significantly accelerate sim-
ulation times through parallelized inference. Our experimental
results confirm the high fidelity of the generated pressure fields
compared to ground truth simulations, while also showcasing
the efficiency of batch processing and optimized sampling
strategies.

Our findings highlight the potential of deep learning for
material simulation, paving the way for more scalable and
efficient acoustic analysis methods. Furthermore, the dataset
we provide establishes a new base for future research in
data-driven material design and inverse modeling, fostering
advancements in physics-informed deep learning applications.
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