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Abstract—Distant-microphone meeting transcription is a chal-
lenging task. State-of-the-art end-to-end speaker-attributed au-
tomatic speech recognition (SA-ASR) architectures lack a multi-
channel noise and reverberation reduction front-end, which limits
their performance. In this paper, we introduce a joint beam-
forming and SA-ASR approach for real meeting transcription.
We first describe a data alignment and augmentation method to
pretrain a neural beamformer on real meeting data. We then
compare fixed, hybrid, and fully neural beamformers as front-
ends to the SA-ASR model. Finally, we jointly optimize the fully
neural beamformer and the SA-ASR model. Experiments on the
real AMI corpus show that, while state-of-the-art method based
on channel fusion fails to improve ASR performance, fine-tuning
SA-ASR on the fixed beamformer’s output and jointly fine-tuning
SA-ASR with the neural beamformer reduce the word error rate
by 8% and 9% relative, respectively.

Index Terms—Beamforming, delay-and-sum, FaSNet, speaker-
attributed ASR, joint optimization

I. INTRODUCTION

Transcription of real distant-microphone conversational
meetings or domestic data is an active research area [1]–[3].
It remains challenging today due to noise, reverberation, and
overlapping speech. To improve performance, many studies
have employed a front-end multichannel speech separation
module or a series of (fixed, statistical, or neural) beamformers
steered toward the speakers to extract individual speech sig-
nals from the overlapping speech mixture and subsequently
feed each of them to a single-speaker ASR module [4], [5].
Unfortunately, the separation error then propagates to the ASR
module. Later studies [6]–[8] proposed jointly optimizing ASR
and front-end separation by back-propagating ASR losses to
the separation module via permutation invariant training (PIT),
albeit at higher computational cost.

End-to-end multi-speaker ASR based on serialized output
training (SOT) [9] addresses these limitations. [10] introduced
an end-to-end Transformer-based speaker-attributed ASR (SA-
ASR) system for joint recognition of speech and speaker iden-
tities from single-channel log Mel features, later extended to
multichannel SA-ASR (MC-SA-ASR) by integrating log Mel
[11] and phase [12] features with time-varying multi-frame
cross-channel attention (MFCCA). Such multichannel atten-
tion schemes are often believed to outperform classical beam-
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forming yielding state-of-the-art performance. Yet, in contrast
to a frequency-dependent complex-valued beamformer, they
rely on frequency-independent real-valued weights, which
results in limited noise and reverberation reduction.

In this paper, we propose to combine SA-ASR with a
beamforming-based noise and reverberation reduction front-
end to improve speech and speaker recognition in far-field
conditions. The beamformer fuses the mixture channels into a
single-channel enhanced mixture fed to SA-ASR. While such
a front-end is common in single-speaker scenarios, extending
it to real multi-speaker scenarios is non trivial. First, the beam-
former must dynamically adapt its spatial response based on
the speakers’ positions and activity patterns, which vary over
time. This complexity explains the scarcity of multi-speaker
beamforming front-ends in the literature. BeamformIt [13] was
used as a front-end for PIT-based multi-speaker ASR [6] and
single-speaker ASR baselines for multi-speaker ASR tasks
[1], [14], while minimum variance distortion-less response
(MVDR) beamforming was used as a front-end for SA-ASR
in [15] without comparison to MFCCA. To our knowledge,
no full-neural beamforming front-end has been used for SA-
ASR so far. Second, pretraining a neural beamformer on real
meeting data is challenging due to the absence of ground truth
noiseless dry mixture signals as pretraining targets.

The contributions of this paper are as follows. First, we
introduce data alignment and augmentation techniques to
pretrain a multi-speaker neural beamformer on a real meet-
ing corpus containing both distant microphone and headset
recordings. Note that the beamformer is employed to reduce
noise and reverberation, but not to extract the individual speak-
ers. Second, we propose a pipeline integrating beamforming
with SA-ASR, aiming to improve both speech and speaker
recognition. Third, we evaluate the differences in performance
between statistical, hybrid, and neural beamformers. Finally,
we jointly optimize the neural beamformer and the SA-ASR
model. Our experiments on the AMI corpus [16] reveal that,
while MFCCA-based channel fusion does not improve ASR
performance, fine-tuning SA-ASR on the fixed beamformer’s
output and jointly fine-tuning SA-ASR with the neural beam-
former reduces the WER by 8% and 9% relative, respectively.

The paper is organized as follows. Section II reviews the
beamformers considered in this work and SA-ASR model.
Section III introduces our joint system and the AMI data

336ISBN: 978-9-46-459362-4 EUSIPCO 2025



alignment and augmentation pipeline. Section IV describes our
experimental setup and results, and we conclude in Section V.

II. BACKGROUND

A. Beamforming and dereverberation methods

The delay-and-sum (DAS) beamformer [17] is a fixed
beamformer, which depends only on the delays between the
microphone signals and a reference microphone. It involves
computing the delays using a time difference of arrival es-
timator such as the generalized cross-correlation with phase
transform [18], shifting the phase of the microphone signals
accordingly in the complex short-time Fourier transform do-
main, and summing them.

Deep neural network (DNN)-based MVDR beamforming
[19], [20] combines neural networks with traditional beam-
forming methods. The DNN is trained to estimate masks in
the time-frequency domain that enhance the desired signals
and suppress interference. This information is then used to
compute the MVDR beamformer weights, which minimize
the output power while preserving the signals from the target
direction. This method can be seen as a transition between
traditional optimization-based beamforming and fully neural
network-based approaches.

The Filter-and-Sum Network (FaSNet) system [21] aims to
directly estimate time-domain beamforming filters. It employs
a two-stage design: the first stage estimates filters for a refer-
ence microphone, and the second stage estimates filters for the
remaining microphones based on pairwise cross-channel fea-
tures between the pre-separated output and each microphone.
The FaSNet architecture utilizes dual-path recurrent neural
networks [22] to extract information from both the channel
and frame levels. The Transform-average-concatenate (TAC)
[23] design paradigm addresses channel permutation and is
capable of handling various numbers of microphones.

Multichannel dereverberation using weighted prediction
error (WPE) [24] reduces reverberation by modeling and
subtracting late reverberant components from the observed
audio signal using linear prediction. This technique optimizes
prediction coefficients and error weights to enhance speech
clarity and intelligibility in reverberant environments.

B. Speaker-attributed ASR

A Transformer-based end-to-end SA-ASR system was pro-
posed in [10]. Following the SOT principle [9], the output is
the concatenation of all speakers’ sentences in first-in-first-
out order, where each token is associated with one speaker
ID and distinct speakers are separated by an <sc> token.
The inputs to the model consist of an acoustic feature se-
quence (log-Mel filterbank) and a set of reference speaker
embeddings. A Conformer-based ASR Encoder first encodes
acoustic information, along with a speaker encoder to encode
speaker information. Then, the Transformer-based ASR de-
coder and speaker decoder modules decode text and speaker
information, respectively. The speaker decoder generates a
speaker representation corresponding to each token in the
ASR Decoder’s output token sequence. This representation is

used to assign speakers by computing a dot product with the
reference speaker embeddings.

III. PROPOSED METHODS

A. Real meeting data alignment and augmentation for neural
beamformer training

Neural beamforming on real-world far-field data is chal-
lenging due to the lack of ground truth enhanced signals for
training. Real meeting corpora such as AMI include headset
recordings for each speaker, but these can’t be used directly
as ground truth because of variable delays caused by the
speakers’ positions. To address this, we generate aligned array
and headset signals in three steps (see Fig. 1): (a) extract all
non-overlapping speech segments for each speaker based on
dataset annotations; (b) align each non-overlapping headset
segment with the corresponding array segment using matched
filters, then cut them into fixed-length clips; (c) randomly
sample and mix array clips from different speakers to create
far-field mixtures, and mix the corresponding aligned headset
clips to obtain the reference noise and reverberation-free
mixtures enhanced mixtures.

Fig. 1. Mixture generation from real meeting data.

The matched filters fij(t) in step (b) are calculated in the
least squares sense by solving

min
fij

∑
t

(fij ⋆ hj(t)− xi(t))
2

(1)

where hj(t) and xi(t) stand for the headset signal of speaker
j and the array signal at microphone i, respectively, and ⋆
denotes time-domain convolution. The solution is obtained as
the finite impulse response Wiener filter, which is commonly
employed for filter estimation.

B. Joint multichannel beamforming and SA-ASR

We propose a joint system integrating beamforming and
SA-ASR for multichannel, distant-microphone meeting tran-
scription. As illustrated in Fig. 2, the multichannel audio is
first processed by a beamformer to generate enhanced single-
channel audio. The output audio is then fed to SA-ASR to
obtain speech and speaker recognition results. We compare the
performance of the fixed DAS beamformer, the hybrid DNN-
MVDR (simply refered to as MVDR) beamformer, and the
fully neural FaSNet beamformer, when fine-tuning the SA-
ASR model on training data enhanced with the respective
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Fig. 2. Proposed joint system of Beamformer and SA-ASR

beamformer. In addition, we backpropagate the loss from SA-
ASR to FaSNet, in order to fine-tune the neural beamformer
according to the SA-ASR training objective.

IV. EXPERIMENTAL EVALUATION

This section details our experimental setup and results. For
reproducibility, our code is available online.1

A. Datasets

Mixed AMI — To train the MVDR and the FaSNet beam-
former, we apply the method described in Section III-A to the
AMI meeting corpus. This method creates mixtures of real
single-speaker AMI segments and their corresponding ground
truths. We name this dataset Mixed AMI. We only use one-
quarter of all meetings and fix the clip length to 4 s. The
mixtures are generated by overlapping randomly selected clips
from 1 to 4 speakers. The training, development, and test sets
contain 150 h, 17 h, and 16 h of speech data, respectively.

Multi-speaker LibriSpeech — To optimize performance on
AMI, the SA-ASR model requires pretraining on a larger
simulated dataset [25]. We created a 960 h training set and a
20 h development set from LibriSpeech [26] train-960 and dev-
clean. We adopted the room simulation and speaker mixture
settings described in [12].

Real AMI — Once pretrained on Multi-speaker LibriSpeech,
the SA-ASR model is fine-tuned and evaluated on real AMI
multiple distant microphones (MDM) data. We utilize the
segmentation method in [12] to partition the MDM data into
5 s chunks and adjust the chunk start/end times to non-
overlapped word boundaries. The resulting Real AMI dataset
contains respectively 165 h, 19 h, and 19 h for training,
development, and test. For both Mixed AMI and Real AMI,
we consider 2- and 8-channel settings.

B. Metrics

We evaluate the beamforming performance using the scale-
invariant signal-to-distortion ratio (SI-SDR) and its improve-
ment (SI-SDRi), implemented in Asteroid toolkit [27], mea-
sured in dB on the Mixed AMI test set. We calculate the
baseline SI-SDR for SA-ASR by defining the array mixture
signal as the estimated signal, ensuring that the SI-SDRi is
0 dB without beamforming. For all beamforming methods, we
calculate the SI-SDR by defining the beamformed signal as
the estimated signal and compute SI-SDRi by subtracting the
corresponding baseline SI-SDR. The performance of SA-ASR
is evaluated by the word error rate (WER) and the sentence-
level speaker error rate (SER) [28] in %.

1https://github.com/can-cui/joint-beamforming-sa-asr

C. Models description

We utilize the implementation of DAS from the Speech-
Brain toolkit [29]. For the MVDR model, we utilize the
implementation in TorchAudio [30]. The number of filterbank
output channels and the number of bins in the estimated masks
are both 513. The implementation of FaSNet with TAC is
from the Asteroid toolkit. The encoder dimension and feature
dimension are 64. The dual path blocks consist of a 4-layer
dual model.

We implemented SA-ASR and the MFCCA-based MC-
SA-ASR system in [12] as a baseline using SpeechBrain.
In SA-ASR and MC-SA-ASR, the Conformer-based encoder,
the Transformer-based decoder and the speaker decoder have
12, 6 and 2 layers, respectively. All multi-head attention
mechanisms have 4 heads, the model dimension is 256, and the
size of the feedforward layer is 2,048. The speaker embedding
model is a pretrained2 Emphasized Channel Attention, Propa-
gation, and Aggregation in Time-Delay Neural Network [31],
yielding 192 dimensional embeddings.

Additionally, we test the performance obtained with WPE,
implemented by [32], during the evaluation of the MC-SA-
ASR model.

D. Training setup

The MVDR and FaSNet beamformer are trained on Mixed
AMI for 200 epochs with early stopping, using the Adam
optimizer with a learning rate of 10−3.

The ASR modules in SA-ASR and MC-SA-ASR are pre-
trained on Multi-speaker LibriSpeech for 80 epochs using
Adam with a learning rate of 5×10−4. The ASR and speaker
modules are then further pretrained on Multi-speaker Lib-
riSpeech for 60 epochs with a learning rate of 2.5×10−4. SA-
ASR and MC-SA-ASR are fine-tuned on either unprocessed
(baseline) or beamformed Real AMI data for 15 epochs, using
Adam with a learning rate of 3× 10−4.

E. Evaluation results

1) Fine-tuning SA-ASR with DAS vs. with frozen MVDR
and FaSNet: We initially evaluated an SA-ASR model fine-
tuned on the first channel of Real AMI. The resulting WER
and SER on mixtures of 1, 2, 3, or 4 speakers were 44.54%
and 34.73%, respectively. However, when testing the same
model on FaSNet beamformed 2-channel Real AMI, the WER,
and SER increased to 64.32% and 46.30%. Therefore, in all
following experiments, we fine-tune the SA-ASR model on
real AMI training data enhanced using the same beamformer
as the test data. This adaptation is essential to align the model
with the specific conditions of the test set.

Table I shows the test results of the baseline models (SA-
ASR and MC-SA-ASR) and the combination of SA-ASR
with three beamformers, where the parameters of MVDR
and FaSNet are frozen during fine-tuning. Without WPE, the
WER comparison between SA-ASR (44.54%) and MC-SA-
ASR (44.99%) demonstrates that, while MFCCA had achieved

2Available at https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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TABLE I
RESULTS FOR MODELS FINE-TUNED AND TESTED ON UNPROCESSED (SA-ASR AND MC-SA-ASR) OR BEAMFORMED (DAS-SA-ASR,

MVDR-SA-ASR, FASNET-SA-ASR) DATA. FOR CONVENIENCE, WE DENOTE SI-SDR AND SI-SDRI AS SDR AND SDRI, RESPECTIVELY.

System # Prm # Chn

Mixed AMI test set Real AMI test set

1-spk 2-spk 3-spk 1,2,3,4-spk 1-spk 2-spk 3-spk 1,2,3,4-spk

SDR SDRi SDR SDRi SDR SDRi SDR SDRi WER SER WER SER WER SER WER SER

SA-ASR 69M 1 5.41 0 5.75 0 5.79 0 5.66 0 26.76 11.92 40.23 32.66 52.31 45.11 44.54 34.73
MC-SA-ASR 59M 2 5.41 0 5.75 0 5.79 0 5.66 0 26.41 11.73 40.79 32.64 52.59 43.82 44.99 34.43
+WPE (test) 2 5.72 0.31 5.93 0.18 5.92 0.13 5.87 0.21 26.43 12.13 40.80 32.54 52.32 44.14 44.72 34.65

DAS-SA-ASR 69M
2 5.62 0.21 5.42 -0.33 5.23 -0.56 5.39 -0.27 25.59 12.82 40.36 33.87 52.04 45.55 44.03 35.56
8 5.66 0.25 5.48 -0.27 5.30 -0.49 5.38 -0.28 23.51 12.13 38.41 33.12 50.43 43.44 41.71 34.40

+WPE 8 6.18 0.77 5.54 -0.21 5.04 -0.75 5.35 -0.31 23.49 11.43 37.89 32.67 50.12 43.59 41.37 33.84

MVDR-SA-ASR 74M
2 7.40 1.98 7.42 1.67 7.46 1.80 7.44 1.78 26.54 12.94 41.07 34.47 52.81 45.18 44.39 35.92
8 8.14 2.72 8.10 2.34 8.10 2.30 8.11 2.44 27.31 12.42 41.27 34.52 52.63 45.07 44.23 35.21

+WPE 8 8.40 2.99 8.09 2.34 8.03 2.24 8.14 2.48 26.35 12.93 41.03 33.72 52.12 44.26 44.12 35.37

FaSNet-SA-ASR
72M

2 10.21 4.79 9.85 4.09 9.56 3.76 9.76 4.10 26.86 11.33 40.91 35.67 52.57 47.12 44.57 36.24
8 10.41 4.99 10.01 4.25 9.72 3.92 9.96 4.29 26.53 10.73 39.93 34.78 51.70 45.28 44.11 35.51

+WPE 8 5.88 0.47 5.88 0.47 5.66 -0.13 5.85 0.19 26.16 10.78 39.35 34.89 51.22 45.25 43.39 35.41

Note: For all the tables, we employed the SCTK toolkit [33] to conduct significance tests, specifically the Matched Pair Sentence Segment test. For the
mixture of 1,2,3 and/or 4 speakers, the best WER/SER and the results statistically equivalent to it at a 0.05 significance level are highlighted.

Fig. 3. Spectrogram of one 8-channel Mixed AMI test chunk. From top
to bottom: 1st array channel; DAS beamformed signal; FaSNet beamformed
signal; ground truth.

a 13% relative WER reduction on simulated data in [12],
it is inefficient on real meeting data. In general, fine-tuning
the SA-ASR model on beamformed audio improves the ASR
performance, particularly in the 8-channel setting, where using
the DAS beamformer leads to a 6% relative reduction in WER
without WPE (41.71%) and 8% with WPE (40.96%) compared
to SA-ASR. It is also interesting to note that, despite FaSNet’s
superior denoising and dereverberation performance in terms
of SI-SDRi, the SA-ASR model trained on speech beamformed
by FaSNet performs less effectively than the one trained on
speech beamformed by DAS. In the 8-channel setting, without
WPE, using DAS results in a 5% relative reduction in WER
compared to using FaSNet (from 44.11% to 41.71%). The
WER relative reduction is up to 6% (from 44.23% to 41.71%)
compared to the MVDR-SA-ASR system. The latter system
has a similar performance to the FaSNet-SA-ASR system.

To find the reason for the difference between DAS-SA-ASR
and FaSNet-SA-ASR, we visualize the spectrogram of one 8-
channel Mixed AMI test chunk before and after beamforming
(see Fig. 3). It can be seen that, although FaSNet exhibits
effective denoising, it also removes a portion of the speech
signal, as highlighted by the white columns in the figure. On
the contrary, DAS can preserve a significant portion of all
speech signals while providing some denoising, which results
in better speech and speaker recognition results.

TABLE II
RESULTS FOR JOINTLY TRAINED 2-CHANNEL FASNET AND SA-ASR

MODELS. “TOTAL”: TEST SET WITH 1,2,3,4-SPEAKER MIX.
Mixed AMI test set Real AMI test set

Pretrained Fine-tuned 1-spk 3-spk mix Total

# Epo SDR SDRi SDR SDRi WER SER WER SER WER SER

0 5.66 0 -16.21 -21.87 25.31 11.37 48.63 43.07 41.71 33.68
5 9.27 3.61 5.13 -0.53 24.91 13.06 47.49 45.00 40.60 34.87

10 9.46 3.79 6.12 0.46 24.99 11.80 48.02 44.75 40.82 34.29
50 9.69 4.02 7.05 1.39 24.54 13.51 47.71 43.87 40.52 34.43

Table I also shows the performance differences for each
system with or without WPE for dereverberation. First, even
without beamforming, using WPE only during the inference
phase for MC-SA-ASR results in a 0.21 dB improvement in
SI-SDR and a slight absolute WER reduction of 0.27% (from
44.99% to 44.72%). For systems using beamformed signals,
integrating WPE during the beamforming phase improves the
SI-SDRi for DAS and MVDR but not for FaSNet. However,
using WPE during beamforming to fine-tune the SA-ASR
model systematically improves ASR and speaker identification
performance. This demonstrates that WPE aids in reverber-
ation reduction for fixed beamformers. However, the im-
provement in recognition performance for neural beamformers
(MVDR and FaSNet) is less pronounced, likely because these
beamformers have already learned to reduce reverberation
during their training process.

2) Joint optimization of FaSNet and SA-ASR: Moreover, we
pretrain FaSNet for 0, 5, 10, or 50 epochs and subsequently
fine-tune it for 15 epochs jointly with SA-ASR by backprop-
agating the SA-ASR loss. The results in Table II show that
joint optimization of FaSNet and SA-ASR (40.52%) reduces
the WER by 9% relative to the frozen FaSNet (44.57%) and
to SA-ASR (44.54%). We also observed the lowest SER as
33.68%, 7% relatively lower than using the frozen FaSNet
(36.24%). However, the fine-tuned FaSNet exhibits a smaller
SI-SDRi than the pretrained one. This indicates that joint
training optimizes FaSNet for ASR performance rather than
maximum noise and reverberation reduction at the cost of
greater speech distortion. Furthermore, while the number of
FaSNet pretraining epochs significantly impacts the SI-SDRi,
it does not significantly impact the result of joint optimization,
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provided it’s nonzero. This demonstrates the insensitivity of
the joint optimization to the pretraining level.

V. CONCLUSION

This paper explored the integration of beamforming with
SA-ASR for joint speech and speaker recognition of far-field
meeting audio. We evaluated the impact of fine-tuning SA-
ASR on the outputs of DAS, MVDR, or FaSNet beamformers
and jointly fine-tuning SA-ASR with the latter, and compared
it with state-of-the-art MFCCA-based channel fusion. Experi-
ments revealed that, in contrast to previously published results
on simulated data, MFCCA’s performance is limited on real
AMI data. This highlights the importance of systematically
evaluating SA-ASR on real meeting data. Experiments show
that DAS and jointly trained FaSNet-SA-ASR reduce WER by
8% and 9%, respectively, while adding WPE to DAS-SA-ASR
yields a 3% gain in both WER and SER.
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