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Abstract—The ability to dynamically adjust the computational
load of neural models during inference in a resource aware man-
ner is crucial for on-device processing scenarios, characterised
by limited and time-varying computational resources. Early-exit
architectures represent an elegant and effective solution, since
they can process the input with a subset of their layers, exiting
at intermediate branches (the upmost layers are hence removed
from the model).

From a different perspective, for automatic speech recogni-
tion applications there are memory-efficient neural architectures
that apply variable frame rate analysis, through downsam-
pling/upsampling operations in the middle layers, reducing the
overall number of operations and improving significantly the
performance on well established benchmarks. One example is
the Zipformer. However, these architectures lack the modularity
necessary to inject early-exit branches.

With the aim of improving the performance in early-exit
models, we propose introducing parallel layers in the architecture
that process downsampled versions of their inputs. We show
that in this way the speech recognition performance on standard
benchmarks significantly improve, at the cost of a small increase
in the overall number of model parameters but without affecting
the inference time.

Index Terms—conformer, zipformer, early-exit, dynamic mod-
els, ASR

I. INTRODUCTION

Although the use of large speech foundation models (SFMs)
is very widespread nowadays for automatic speech recognition
(ASR) applications, their utilization on edge devices, where
memory and computation resources are very limited, is still
prevented. Resource-constrained applications require to use
models that have much less parameters than those of SFMs
and that can dynamically change their trade-off between
computation and performance. To this end, we investigated
in the past the use of early-exit architectures applied to large-
vocabulary ASR [1].

“Early-exit” (EE) architectures introduce intermediate exit
branches [2], [3] that allow to process the input by only
a subset of layers exiting before reaching the top layer,
thus saving computations. Early-exit architectures leverage
the observation that, for simpler inputs, the lowest layers
of the model may have already learned sufficient parameters
for accurate predictions and have been succesfully applied to
ASR [4], [5].

Figure 1 shows an example of an early-exiting network,
where specific decoders process exits of intermediate layers.
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Note that this architecture is suited to be implemented either
over a distributed environment, consisting of models with a
device specific number of layers (“resource aware”), or using
a single model that selects the best exit according to a given
metric (“result aware”). In this work, we address only the
resource-aware case, referring the reader to our previous work
for details on the usage of early-exit metrics [1].
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Fig. 1. Resource-aware and result-aware uses of early-exits. Left: the device
is allowed to dynamically process only two layers, whereas the server can
handle the whole model. Right: the first input needs to be processed by by all
of the encoder layers; in the second case, the best transcription is produced
after only two encoder layers.

Recently the Zipformer, a faster and more memory-efficient
encoder architecture, has been proposed for ASR [6]. This
architecture overcomes all previous confomer based mod-
els [7]-[9] both in terms of performance and computational
load (meant as both memory occupancy and inference time).
The zipformer implements, in addition to various innovative
features, a stack of layers that downsample the input sequence
with different lower frame rates. The intuition behind this
approach is that processing with a few additional layers,
applying different sampling rates, allows for broader acoustic
contexts to be considered. Unfortunately, these architectures,
introducing different frame rates through the backbone, do not
marry well with early exit branches.

Inspired by the Zipformer, we have modified our previ-
ous early-exit architecture [1] by exploiting both input layer
downsampling and parallel connections between layers. Exper-
imenting with different variants of this approach, we observed
that the best model includes two parallel downsampling layers,
in both the first and last encoder outputs.
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We show that in this way the word error rate (WER) on stan-
dard ASR benchmarks can be significantly reduced, at the cost
of a small increase in the overall number of model parameters.
We have also measured small gains in the computation times in
the lowest exits of the proposed architecture. In summary, the
contribution of this work is as follows: i) the development of a
new EE architecture inspired by zipformer; ii) an experimental
analysis on well established ASR benchmarks showing the
effectiveness of the proposed architecture; iii) an analysis of
performance vs. model complexity, expressed both in terms
of computation times and number of floating point operations
(FLOPS), depending on each exit.

II. RELATED WORK

Early-exiting methods were first introduced for computer
vision in BranchyNet [2] by adding two branches to AlexNet
[10]. The authors optimised the joint loss of the exits and
defined a confidence measure, based on the entropy of the
output class distribution, to decide the exit level. To accelerate
inference time in ASR, [11] proposes to use confidence
measures, given by CTC decoders, or entropies computed
from the logits of early-exits of a pre-trained audio encoder
(i.e. HUBERT). A deep analysis of “overthinking” of ASR
encoders has been carried out in [12], where theoretical lower
limits of inference speed vs. ASR performance have been
derived for different early exit strategies. Similar investigations
have been explored in [5] for streaming using recurrent neural
networks. [4] have investigated early-exit fine-tuning strategies
in the context of a large pre-trained WavLM [13] model,
comparing them with approaches based on layer removal and
input down-sampling.

In our previous work [1] we investigated the training dynam-
ics of early-exit models, showing that training the model from
scratch, jointly optimizing all exited layers, provides signifi-
cant performance improvements over both conventional single-
exit models and fine-tuned pre-trained models (particularly at
the lowest exits).

From a different perspective, two previous works have opti-
mized the conformer architecture, for ASR tasks, introducing
variants both in several points of the basic conformer module
and in the pipeline. The Squeezeformer architecture described
in [9] uses: a) the U-net [14] temporal structure to reduce
the computations required by the multi-head attention modules
in the conformer pipeline and b) a simplified basic block, as
an alternative to the Macaron structure of the conformer [7],
similar to a standard transformer block. This work shows
that the U-net structure, applying downsampling/upsampling
operations to the input/output layers of the architecture, allows
to reduce the number of operations in the whole architecture
maintaining, at the same time, the resolution of the original in-
put features. Similarly, the Zipformer architecture [6] operates
in the middle layers at lower frame rates. It also applies a set of
changes to the basic conformer architecture that improves both
velocity and memory efficiency. Either architectures have been
successfully applied to standard ASR benchmarks showing
significant performance gain.

In this work, we inherit the idea of U-net and apply it to
an early-exit architecture. To make this feasible we introduce

parallel layers in the baseline model, that perform down-
sampling/upsampling of the input embeddings. This approach
significantly improves the overall performance and also allows
to slightly reduce the decoding times in the lowest exits.

III. EARLY-EXIT LOSS

Given an input sequence of acoustic observations x and a
neural model ©, an ASR system estimates the output sequence

y=9¥1,---,yL as:
y = arg max P[y|x, 6], (1)
y

where y € YV*, for some vocabulary ), such as graphemes,
phonemes, or word-pieces. Usually © is factored into an en-
coder and a decoder. The encoder extracts an high-dimensional
representation h? of the input x and the decoder maps this
representation into the output sequence y. Since L < T in
general, ASR decoders either use; a) an alignment function
(B : al" — r) for sequence training (r is the reference labels
string), or b) a cross attention mechanism with label-based
cross-entropy optimization [15]. Our goal is to apply early-
exiting to ASR by adding decoders at some intermediate layers
of the encoder (see Fig. 1). Assuming to use M intermediate
decoders, giving outputs y(1),...,y(M), the overall model
is trained by optimizing the following joint objective:

M
Lep(M),...,y(M),r) = > LF(m),r), @
m=1

where L(y(m),r) = —log P[r|x,0,,], and ©,, denotes the
subset of parameters of © from the first to the m-th layer. In
this work the encoder computes h?'(m),1 < m < M, and
the decoders are linear layers with softmax function. They
allow to estimate the probability of ) U {¢} for each input
frame, being ¢ a “blank” token indicating ’no label issued”.
The intermediate loss function is the connectionist temporal
classification (CTC) [16], defined as:

T
Loro(y,r) = —log Y ] Plac/nl], 3)

alep-1t=1

where a; € Y U {¢}. To ease the notation, in the equation
above we have removed the dependence of all the variables
on layer m.

IV. PROPOSED ARCHITECTURE

While the Zipformer incorporates numerous blocks and
modules specifically designed to optimize ASR performance
in a single exit” architecture, our study focuses solely on
the integration of downsampling and upsampling operations
within an EE architecture. To assess the effectiveness of this
approach, we conducted a preliminary experiment comparing
the performance of a “single exit” audio encoder, based on
the U-net architecture, with that of a baseline ’single exit”
conformer-based encoder.

Conformer-baseline consists of a 1-D convolutional front
end that downsamples the input sequence, represented by 80-
dimensional Mel Frequency Cepstral Coefficients (MFCC), by
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Fig. 2. The U-net modified architecture of the audio encoder.

a factor of two (from 100 Hz to 50 Hz), followed by a posi-
tional encoding module that feeds a stack formed by 12 con-
former layers. In the ”U-net modified” encoder architecture,
shown in Figure 2, the output of the first two conformer layers
is sent to a stack of 5 blocks, each formed by a variable number
of conformer layers, with a residual connection between them.
Similarly to zipformer each block is preceded and followed by
downsampling and upsampling operations, respectively, that
process the input stream at different frame rates, namely: 50
Hz, 25 Hz, 12.5 Hz and 6.25 Hz. In both architectures the
optimized loss is the CTC loss evaluated from the output of
the linear soft-max decoder (note that for the sake of clarity
the decoder blocks are not depicted in the figures).

Table I reports the results achieved with these two architec-
tures on the LibriSpeech benchmark (see Section V), where
significant improvements yielded by the “U-net modified”

encoder can be seen!.

TABLE I
9% WERS ACHIEVED WITH THE ”"SINGLE-EXIT” MODELS ON THE
LIBRISPEECH EVALUATION DATA SETS.

Architecture test-clean | test-other
Conformer-baseline | 6.1 17.3
U-net modified 4.4 13.3

Therefore in order to exploit, similarly to U-net, variable
time resolution processing in an early-exit architecture, we
introduce Splitformer, the architecture shown in Figure 3,
where: a) one exit decoder is inserted every two conformer
layers, and b) the first and last encoder exits are computed
by summing the outputs of a standard (two conformer layers)
block and of one parallel layer that processes the input with
a downsampling factor equal to 2. Despite its simplicity, the
experimentation with different configurations, i.e. exploiting a
different number of parallel branches and applying different
values for the sampling factors, did not produce significant
benefits, the architecture of Figure 3 being the best compro-
mise between complexity and performance level.

Finally, in the experiments reported below Splitformer is
compared with EE-baseline, derived from the Conformer-
baseline by simply including one exit decoder every 2 con-
former layers. In both of these EE architectures the optimized
loss is the one of Equation 2.

'Note that the WERs of the original Zipformer architecture, as reported
in [6], are 2.4% and 5.7% on test-clean and test-other, respectively. The
performance discrepancy observed with respect to the two architectures
presented in Table I, can primarily be attributed to the application of data
augmentation techniques during the training of the Zipformer — techniques
that were not employed when training either the Conformer-baseline or the
”U-net modified” architectures.
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Fig. 3. The Splitformer architecture of the audio encoder.

V. EXPERIMENTS

We carried out all our experiments on two well-
established public benchmarks for ASR: LibriSpeech [17] and
TEDLIUM [18] datasets. LibriSpeech contains /1,000 hours
of read-aloud english audiobooks. The training set includes
2338 speakers and the evaluation set includes 146 speakers.
We refer to [17] for further details and baseline performance.
TEDLIUM-V3 comprises of ~452h of transcribed English
speeches from TED video conferences for training and ~6h
for evaluation. Besides comparing our proposed Splitformer
with its baseline counterpart (EE-baseline) both trained from
scratch, we also experimented with two well known pre-
trained models, namely: Wav2Vec2 [19] and WavLM [13],
including early-exits in their architectures and fine-tuning
their encoders/decoders layers. Also in this case, the decoders
applied in each exit are linear layers followed by soft-max
functions.

Table II provides details for all the architectures employed.
Differently from the conformer based architectures (i.e. EE-
baseline and Splitformer), both Wav2Vec2 and WavLM take
as input the raw waveforms and use grapheme base tokenizers
with 32 tokens (28 characters + 1 blank token + 2 sentence
boundary tokens + 1 unknown token) per their official recipe.

Instead, both EE-baseline and Splitformer use a byte pair
encoding (BPE) based tokenizers [20], with 256 tokens. For
their training the learning rate followed the scheduling scheme
reported in [15]. Specifically, we employed a number of warm-
up steps equal to the size of each train dataloader (e.g., 17580
for the 960h LibriSpeech training set, with batch size equal to
16). We used the Adam optimiser [21] with 8; = 0.9, 5o =
0.98, and € = 1le~?. Dropout, with probability p = 0.1, was
applied before the summation inside each conformer residual
block. To limit the number of ”pad” tokens in the batches, we
removed from each audio dataset training samples having a
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9% WERS ACHIEVED ON THE ON LIBRISPEECH EVALUATION SETS WITH THE DIFFERENT EARLY-EXIT MODELS.

TABLE 11

PARAMETERS OF THE EARLY-EXIT ARCHITECTURES USED IN THE EXPERIMENTS

Feature | EE-baseline | Splitformer | Wav2Vec2 | WavLM (Base+)
# params (M) 31.5M 36.7M 94.0M 94.7TM
Encoder 12-layer Conlf.|14-layer Conf.| 12-layer Transf. 12-layer Transf.
Attention dim. 256 256 768 768
Number heads 8 8 8 8
Feed-forward dim. 2048 2048 3072 3072
Decoder Linear Linear Linear Linear
Inputs 80-d MFCC| 80-d MFCC Waveform * Waveform *
Loss function LcoTce LcoTce LcoTco LcoTce
Output tokens BPE BPE Grapheme Grapheme
LM rescoring X X X X
Data augmentation X X v v
TABLE III

EE-baseline Splitformer Wav2Vec2 WavLM
Layer test-clean test-other test-clean test-other test-clean test-other test-clean test-other
2 31.0 51.0 28.1 48.3 33.7 56.0 28.0 48.5
4 11.7 27.8 10.8 26.4 17.4 36.7 13.9 27.3
6 7.1 19.8 6.7 19.2 9.6 23.7 8.7 18.4
8 5.8 16.6 5.5 16.3 5.8 15.9 4.8 12.4
10 5.3 15.3 5.1 15.1 4.5 12.6 4.0 9.5
12 5.1 14.8 4.8 14.7 4.3 12.2 3.6 8.8

length greater than 600 characters. We have run 70 training
epochs and for inference we averaged the models of the last
20 epochs.

To train both Wav2Vec2 and WavLM we freezed the fea-
tures extraction layers of the pre-trained models (we used
”Wave2Vec2-base” model) and fine tuned optimizing the loss
in equation 2. The parameters of the Wav2Vec2 model are
those of the default configuration in the huggingface repos-
itory>. We trained it using 50 epochs. The code for: EE-
baseline, Splitformer and Wav2Vec2 is available®*, while
the fine-tuning of the WavLM model follows the related
SpeechBrain recipe’.

Finally, as mentioned in Section I, in this work we only
focused on the overall EE model performance, without ad-
dressing the task of automatic exit selection according to some
measure of reliability. For this topic we refer the reader to our
previous work [1].

VI. RESULTS

Table III shows the results achieved with all the above
mentioned models on the LibriSpeech evaluation data sets.

Notice that the Splitformer delivers superior performance
than EE-baseline in all exits, more consistent in the low-
est ones. Note also that the performance of Splitformer, in
the lowest exits, are often better than those achieved with
both Wav2Vec2 and WavLM, despite its lower number of
parameters. In the upmost exits the pre-trained models exhibit
significantly better performance, especially on the "test-other”
noisy dataset. However, it has to be considered that, differently
from Wav2Vec2/WavLM, Splitformer has not been trained

Zhttps://huggingface.co/docs/transformers/model_doc/wav2vec2
3https://github.com/augustgw/early-exit-transformer
“https://github.com/augustgw/wav2vec2-ee
Shttps://github.com/speechbrain/speechbrain

applying data augmentation. Finally, comparing the results of
EE-baseline in Table III with those in Table I note also the
superior performance of the EE loss of equation 2, as discussed
in our previous paper [1].

TABLE IV

% WERS OBTAINED WITH EE-BASELINE AND SPLITFORMER ON THE
TEDLIUM EVALUATION SETS.

EE-baseline Splitformer
Layer dev test dev test
2 453 45.8 37.0 37.9
4 20.5 21.0 18.3 18.0
6 13.8 139 13.7 13.0
8 11.6 11.3 11.4 114
10 10.8 10.6 10.6 10.3
12 10.5 10.3 10.3 9.9

When considering only the EE-baseline and Splitformer
architectures, the trends observed on the TEDLIUM dataset
mirror those reported in Table III, as illustrated in Table IV.
Also in this case, the performance improvements of Split-
former with respect to the baseline are noticeable, especially
in the lowest exits. As a general remark notice that the
improvements in the Splitformer are not only localized in
the lowest exit which, due to the insertion of the parallel
downsampling layer, employs 50% more parameters than the
corresponding EE-baseline exit, but also propagate to the
upmost exits.

A. Computational costs

Finally, we have carried out some comparisons in terms of
the computational costs. Table V shows for each exit: the total
execution time (including both CPU and GPU times) employed
to generate the automatic transcripts and the number of tera-
FLOPS spent in the corresponding encoder layers. The values
of the Table have been computed on the whole evaluation sets
of both LibriSpeech and TEDLIUM.
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TABLE V
ToTAL GPU/CPU EXECUTION TIMES (IN SECONDS) AND NUMBER OF TERA-FLOPS, SPENT IN THE ENCODER, NEEDED TO GENERATE THE
TRANSCRIPTIONS IN EACH EXIT LAYER. THE VALUES HAVE BEEN COMPUTED ON THE WHOLE EVALUATION SETS OF BOTH LIBRISPEECH AND
TEDLIUM. THE NUMBERS OF MODEL PARAMETERS BEFORE EXITING EACH LAYER ARE ALSO GIVEN.

EE-baseline Splitformer
Layer LibriSpeech TEDLIUM LibriSpeech TEDLIUM
Time (sec) TFLOPS | Time (sec) TFLOPS | #params Time (sec) TFLOPS | Time (sec) TFLOPS | #params
2 6112 10.5 3178 33 5.4M 5931 12.3 2890 3.9 8.0M
4 3217 20.2 1801 6.4 10.6M 3168 22.1 1830 7.0 13.2M
6 2090 30.0 1315 9.6 15.8M 2339 31.8 1283 10.1 18.4M
8 1660 39.7 1054 12.7 21.1M 1881 41.6 1144 13.2 23.7M
10 1414 49.5 1071 15.8 26.3M 1898 51.3 1080 16.4 28.9M
12 1343 59.3 1084 18.9 31.5M 1921 63.5 1081 20.2 36.7M

We observe the following two main results: a) overall
computation times are much higher at lower outputs than at

X ) K R R R [2] T. Teerapittayanon, B. McDanel, , and H. Kung, “BranchyNet: Fast in-
higher ones; b) the difference in computation times between ference via early exiting from deep neural networks,” arXiv:1709.01686,
the two architectures is quite small, the spliformer ones . 1%/([)11;-1 QCHL il based ; |

. . . . . Phuong and C. H. Lampert, “Distillation-based training for multi-exit
are slightly 10w§r at the .lowest exits, while they are a bit architectures.” in Proc. of ICCV, 2019, pp. 1355—1364.
higher at the highest exits. The result coming from the  [4] S.Zaiem, R. Algayres, T. Parcollet, S. Essid, and M. Ravanelli, “Fine-
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attribute this behaviour to the pruning operations, applied to - ;peécli rt¢c?g8{tlog,” éﬁ_ProNc.qu ICLR{( 220}124, LYo W, Han S, W
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number of “blank” tokens is the majority, their pruning has a speech recognition and understanding,” in Proc. of ICML, 2022.
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