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Abstract—Pretrained end-to-end (E2E) automatic speech
recognition (ASR) models, such as Wav2Vec2, HuBERT and
WavLM, have achieved near-human performance on adult speech
in zero-resource settings. However, their performance in chil-
dren’s speech remains poor in zero-resource scenarios. To sub-
stantially improve performance in children ASR fine-tuning with
little in-domain data is required, which might be untenable given
the lack of labeled data. In this context, we wonder how without
using children’s speech can we bridge the performance gap? In this
work, we address this challenge by (1) reviewing modifications
applicable in zero-resource scenarios, (2) leveraging in-domain
text resources for adaptation, and (3) comparing both E2E ASR
architectures and hybrid HMM/DNN Kaldi-based systems. Our
observations serve as important takeaways for building children
ASR with minimal resources.

Index Terms—end-to-end, ASR, HMM/DNN, children speech

I. INTRODUCTION

The study of automatic speech recognition (ASR) for chil-
dren’s speech has led to great improvements in the areas of
language learning for kids [1], [2], voice search [3], diagnosis
and remedial therapy for pathological speech [4], and even
toys and games [5]. The availability of pretrained models has
further democratized the race to improved performance in such
low-resource scenarios. Fine-tuning these pretrained models
on children’s speech data has been shown to significantly
enhance ASR performance [6]–[9]. However, this approach
often requires labeled datasets for optimal results, presenting
a challenge given the limited availability of children’s speech
corpora.

On the other hand, adult speech is seeing improved per-
formance even without fine-tuning, where zero-resource ap-
plication of pretrained models has achieved near-human per-
formance [10]. However, zero-resource ASR for children’s
speech has not seen similar effects, thus, building children
ASR systems expensive. In this work, we explore bridging
the performance gap between the zero-resource and fine-tuning
based usage (low-resource) of pretrained models. Specifically,
we review techniques that require zero-children speech but
need in-domain text for decoding in children’s speech recog-
nition.

To this end, we make the following contributions: Firstly, we
compare pretrained model performance on children’s speech
test set altered using speech modifications and their unaltered
version. These comparisons tell us the relevance of speech

modification as a zero-resource tool. Secondly, we use in-
domain text to decode with an ASR model on children’s
speech, as obtaining in-domain text for scenarios like language
assessment and voice search easier than labeled speech. These
experiments help us understand the limits of using in-domain
text. Thirdly, we compare these observations against fine-
tuning with labeled children speech and hybrid HMM/DNN
trained without children speech. Given speech modifications
and decoding with language models, the former comparison
gives the state of current gap for pretrained end-to-end models
and the latter comparison presents these gains in context of
different types of ASR models.

II. RELATED WORK

This work distinguishes itself from prior work by inves-
tigating the use of pretrained models, speech modifications
and ASR architectures for children ASR without using any
children’s speech. In this section, we discuss these dimensions
in further detail.

A. Using Pretrained Models for Children ASR
Prior work [10], [11] has effectively used Whisper, a

large pretrained model, to improve ASR performance on
children’s speech. These works have focused on fine-tuning
with small amounts of children datasets effectively to show
great improvements over zero-resource scenarios. These stud-
ies clearly highlight the substantial performance gap between
zero-resource and low-resource approaches in children’s ASR.
On the other hand, zero-resource based improvements of
Wav2Vec2 models for children ASR have also been studied
using speech modifications [12]. In contrast to this work, we
focus on bridging this gap by improving the children’s ASR
performance without using any children’s speech, where we
do not stay within the constrains of zero-resource and employ
in-domain text for improving ASR.

B. Speech Modifications for Children ASR
Speech modifications [13]–[24] have been a popular set

of methods for improving performance on children’s speech.
Intuitively, these methods focus on minimizing the mismatch
between adult and children’s speech to improve ASR per-
formance. Recently, they have also shown promise in zero-
resource scenarios [12], where application of speech modifica-
tion techniques on children’s speech test set can help improve
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Wav2Vec2 performance on modified speech. Our work aims
to study these improvements in combination with other factors
like language modeling and ASR architectures like hybrid
HMM/DNN and E2E models.

C. ASR Architectures for Children ASR

For children’s ASR, end-to-end (E2E) models like RNN-T
[25]–[27] have incorporated integrated language models (LMs)
due to their architectural design. In contrast, decoding with
external LMs is often omitted for other E2E models, such
as Wav2Vec2 [8], [12], as part of the ASR pipeline. These
design choices have also contributed to the declining focus on
hybrid HMM/DNN models for zero-resource children’s ASR
scenarios.

To address the performance gap between zero- and low-
resource children’s ASR, this work investigates the zero-
speech performance of hybrid HMM/DNN models, leveraging
an in-domain language model for decoding.

III. METHODS TO IMPROVE CHILDREN ASR

In this section, we explore various approaches aimed at
improving ASR performance for children’s speech. These
approaches target the acoustic and linguistic mismatches be-
tween adult and children’s speech, which are significant factors
behind the suboptimal performance of ASR systems primarily
trained on adult speech data. We classify these methods
into three key strategies: speech modifications, decoding with
children-specific text, and fine-tuning using transcribed chil-
dren’s speech data.

A. Speech Modifications

Children’s speech exhibits notable differences from adult
speech in terms of acoustic and linguistic features such as
pitch, speaking rate, and formant positions, which can ad-
versely affect ASR performance.

Pitch varies with age and gender [16], [17], [19]; for
example, adult females usually have a pitch between 200-
250 Hz, adult males between 100-150 Hz, whereas children
generally have a higher pitch, averaging around 250-350 Hz.
To adjust for these differences, we employ a time-domain pitch
modification algorithm called Real-Time Iterative Spectrogram
Inversion with Look-Ahead (RTISI-LA) [20]–[22]. RTISI-
LA reconstructs a high-quality time-domain signal from the
speech spectrogram, allowing for precise pitch alterations
while preserving essential signal characteristics.

In addition to pitch, speaking rate also differs with adults
typically speaking faster than children [16], [17], [19], [28].
We utilize the same RTISI-LA method for modifying speaking
rate by adjusting a speed factor, thereby changing the duration
of the speech signal per unit time.

Finally, formant locations vary between adult and child
speech [16], [17], [29]–[31]. To compensate for these differ-
ences, we explore a linear prediction (LP) based method for
formant modification. This approach involves warping the LP
spectrum via an all-pass filter, using a warping factor α (where

−1 < α < 1). When α is positive, formant frequencies are
shifted lower; when negative, they are shifted higher.

In our study, we concentrate on proven techniques to
mitigate each of these variations by leveraging both conven-
tional HMM/DNN, TDNN systems and readily available self-
supervised learning (SSL) frameworks.

B. Decoding with Children’s Text

Traditionally, language models (LMs) have relied on text
data tailored to adult speech, which often fails to capture
the linguistic patterns and vocabulary specific to children. By
incorporating children’s text, the system learn to predict and
decode child-specific speech.

This adaptation is particularly effective for hybrid
HMM/DNN models, which combine the temporal modeling
capabilities of Hidden Markov Models (HMMs) with the
feature extraction strengths of Deep Neural Networks (DNNs).
Within this framework, children’s text data is utilized in two
critical ways:

• updating the dictionary to include child-specific lexical
items and their phonetic representations, and

• training the LM on children’s text data to better reflect
their unique language usage patterns.

The dictionary update addresses challenges in recognizing
child-specific pronunciations and vocabulary items that may
be absent in standard adult-focused datasets. Meanwhile, the
LM benefits from text tailored to children’s linguistic habits,
enhancing the accuracy of predicted word sequences. By inte-
grating these updates, the hybrid HMM/DNN system becomes
more robust in handling the phonetic variability and language
patterns characteristic of children’s speech.

C. Fine-tuning with Children’s Transcribed Speech

Fine-tuning ASR systems with transcribed children’s speech
is one of the most effective methods to address the acoustic
and linguistic mismatches between adult and children’s speech.
This process involves adapting a pre-trained ASR model using
a smaller, manually annotated dataset of children’s speech.
Fine-tuning allows the acoustic model to learn child-specific
phonetic and acoustic patterns while retaining the general
knowledge gained from larger adult speech datasets.

Although the availability of transcribed children’s data is of-
ten limited, fine-tuning can be performed with relatively small
datasets, making it feasible in resource-constrained scenarios.
This method has consistently shown significant improvements
in reducing word error rates (WERs) for children’s ASR
systems across diverse datasets.

IV. METHODOLOGY

A. Datasets

Three speech corpora were used in this study: two British
English datasets (WSJCAM0 and PFSTAR) and one American
English dataset (LibriSpeech).

• WSJCAM0 [32]: A British English adult speech corpus
containing recordings from 140 speakers. The training
subset consists of 15.5 hours of data from 92 speakers.
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This dataset was used to train hybrid HMM/DNN and
TDNN models for analyzing in-dialect (British adult →
British children) generalization.

• PFSTAR [19], [31], [33]: A British English children’s
speech corpus with recordings from children aged 4-
14 years. The training set includes 8.3 hours of speech
from 122 speakers, while the test set comprises 1.1 hours
of read speech from 60 speakers (32 male, 28 female).
PFSTAR was used for SSL fine-tuning and evaluating all
ASR systems.

• LibriSpeech [34]: A 960-hour American English adult
speech corpus with recordings from 2,484 speakers. SSL
models (Wav2Vec2, HuBERT, Data2Vec, WavLM) pre-
trained on LibriSpeech were used to study cross-dialect
(American adult → British children) and cross-domain
(adult → child) mismatches.

PFSTAR’s test set served as the benchmark for all evalua-
tions. To isolate domain/dialect effects:

• In-dialect models: Kaldi systems trained on WSJCAM0
(British adults) with PFSTAR LM adaptation.

• Cross-dialect models: SSL models pretrained on Lib-
riSpeech (American adults) tested directly on PFSTAR.

B. Kaldi ASR Configuration

The Kaldi toolkit was used to train hybrid HMM/DNN
and TDNN acoustic models. Speech signals were analyzed
using overlapping Hamming-windowed frames (10 ms frame
shift) to compute 13-dimensional MFCC features, augmented
with delta and delta-delta coefficients. A 40-channel mel
filterbank was employed for MFCC computation. Cepstral
feature space maximum likelihood linear regression (fM-
LLR) was applied for normalization, with transformations
derived using speaker adaptive training (SAT). The hybrid
HMM/DNN system utilized fMLLR-normalized features with
time-splicing. The DNN comprised eight hidden layers (1,024
nodes each), trained with a minibatch size of 256. The initial
learning rate of 0.015 was reduced to 0.002 after 10 epochs,
followed by 5 epochs of fine-tuning. For the TDNN acoustic
model, training involved linear discriminant analysis (LDA),
maximum likelihood linear transform (MLLT), and SAT-based
GMM alignments. Speaker adaptation was performed using
i-vectors, with an initial learning rate of 0.0005 reduced to
0.00005 during training.

C. Language Model Integration

The decoding stage in Kaldi employs a two-pass strategy to
improve accuracy. In the first pass, a trigram language model
(LM) generates lattices of initial hypotheses. These lattices
are then re-scored in the second pass using a more complex
4-gram LM trained on transcripts from the PFSTAR dataset
(excluding the test set). This domain-specific LM incorporates
child-specific lexical items (e.g., simplified vocabulary, repeti-
tions) and phonetic variations, enabling the hybrid HMM/DNN
system to better recognize children’s speech patterns. The
integration of in-domain text resources ensures contextual

relevance during decoding, addressing linguistic mismatches
between adult-trained models and children’s speech.

D. Pretrained SSL Models

We evaluated three state-of-the-art self-supervised learning
(SSL) models pretrained on large-scale speech corpora:

• Wav2Vec2 [35]: Pretrained on 60k hours of unlabeled
Libri-Light audio using contrastive learning, and fine-
tuned on 960 hours of labeled LibriSpeech.

• HuBERT [36]: Trained on the same 60k-hour Libri-Light
corpus using masked prediction with offline clustering to
generate targets.

• WavLM [37]: Pretrained on 94k hours from Libri-Light,
VoxPopuli, GigaSpeech, and MLS, with a noise-robust
training objective. Fine-tuned on LibriSpeech.

All models share a common architecture comprising 25
hidden layers with a feature size of 1024. The initial layer
extracts CNN-based features, while the remaining 24 layers
employ transformers to model long-range dependencies and
improve contextual understanding.

TABLE I
SPECIFICATIONS OF PRETRAINED SSL MODELS USED IN THE STUDY. THE

TABLE INCLUDES MODEL SIZE (IN MILLIONS OF PARAMETERS),
PRETRAINING DURATION (IN HOURS), AND FINE-TUNING DURATION (IN

HOURS) FOR LARGE-SCALE SSL ARCHITECTURES: WAV2VEC2,
HUBERT, AND WAVLM

Model Size Pretraining (h) Fine-tuning (h)

Wav2Vec2-large-960h-lv60-self 317M 60,000 960
HuBERT-large-ls960-ft 316M 60,000 960

WavLM-large 343M 94,000 960

E. Fine-Tuning Setup

The SSL models were fine-tuned on the PFSTAR children’s
speech dataset (8.3 hours of training data). Training used a
fixed learning rate of 1 × 10−4, weight decay of 0.005, and
20 epochs with gradient checkpointing to prevent overfitting.
The vocabulary included all characters from PFSTAR tran-
scriptions, and Connectionist Temporal Classification (CTC)
loss aligned speech-to-text sequences. Decoding used greedy
search without external language models to isolate the impact
of acoustic model adaptation.

V. RESULTS

This section evaluates the performance of hybrid (Kaldi) and
SSL-based ASR systems on the PFSTAR children’s speech
test set. We analyze baseline models, speech modifications,
combined adaptations, and fine-tuned SSL models.

A. Baseline Performance

Table II compares baseline WERs for hybrid and SSL
models. The Kaldi TDNN system trained on adult British
English speech (WSJCAM0) achieved 83.17% WER when
decoded with the WSJCAM0 adult LM. Replacing the LM
with PFSTAR’s child-specific text reduced WER to 14.16%,
demonstrating the necessity of in-domain linguistic adaptation.
SSL models pretrained on LibriSpeech (American English
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TABLE II
BASELINE WER (%) ON PFSTAR TEST SET. THE TABLE COMPARES

TRADITIONAL KALDI-BASED SYSTEMS (TDNN, DNN) WITH
DOMAIN-SPECIFIC LANGUAGE MODELS (LMS) AND MODERN

SELF-SUPERVISED ARCHITECTURES (WAV2VEC2, HUBERT, WAVLM)
TRAINED WITHOUT LM INTEGRATION

Model LM WER (%)

Kaldi TDNN WSJCAM 83.17
Kaldi TDNN PFSTAR 14.16
Kaldi DNN PFSTAR 19.58

Wav2Vec2-base-100h - 36.50
Wav2Vec2-base-960h - 21.95
Wav2Vec2-large-960h - 14.09
Wav2Vec2-large-960h-lv60-self - 10.65
HuBERT-large-ls960-ft - 10.67
WavLM-large - 25.42

adults) showed cross-domain/cross-dialect gaps: Wav2Vec2-
large-960h-lv60-self achieved 10.65% WER, while WavLM
struggled (25.42% WER) struggled the most among the SSL
models. We excluded WavLM-large from further experiments
due to its comparatively poor performance among the evalu-
ated SSL models.

B. Impact of Speech Modifications

Table III evaluates the effect of pitch modification (PM),
speaking rate modification (SR), and formant modifications
(FM). For hybrid systems, formant adjustments yielded the
largest gains (14.16% → 12.37%), aligning children’s higher
formant frequencies (e.g., F1/F2 shifts) with adult-trained
acoustic models. SSL models showed mixed results: smaller
architectures like Wav2Vec2-base improved substantially with
FM (36.50% → 32.71%), while larger models like Wav2Vec2-
large saw marginal gains (10.65% → 10.41%).

C. Combined Modifications

Table IV shows cumulative improvements from combining
PM, SR, and FM. Hybrid HMM/DNN systems achieved com-
prehensive gains, reducing WER to 8.87% (a 36.5% relative
improvement over the TDNN baseline). In contrast, SSL
models exhibited limited adaptability: for example, Wav2Vec2
plateaued at 10.16% WER (from 10.65%), underscoring its

TABLE III
WER (%) FOR ASR MODELS UNDER BASELINE AND MODIFIED SPEECH

CONDITIONS. THE TABLE COMPARES TRADITIONAL KALDI-BASED
SYSTEMS (DNN, TDNN) AND SELF-SUPERVISED ARCHITECTURES

(WAV2VEC2, HUBERT) ACROSS PITCH MODIFICATION (PITCH), SPEECH
RATE ADJUSTMENT (SR), AND FORMANT MODIFICATION (FM)

Model Baseline PM SR FM

Kaldi DNN 19.58 12.68 16.68 14.22
Kaldi TDNN 14.16 12.55 13.11 12.37

Wav2Vec2-base-100h 36.50 35.08 36.56 32.71
Wav2Vec2-base-960h 21.95 22.50 22.74 21.08
Wav2Vec2-large-960h 14.09 15.11 15.37 13.85
Wav2Vec2-large-960h-lv60-self 10.65 10.33 11.09 10.41
HuBERT-large-ls960-ft 10.67 10.43 10.49 10.22

TABLE IV
WER (%) FOR ASR SYSTEMS UNDER BASELINE CONDITIONS AND AFTER

COMBINED SPEECH MODIFICATIONS (PM + SR + FM). THE TABLE
COMPARES TRADITIONAL (KALDI TDNN) AND SELF-SUPERVISED

(WAV2VEC2-LARGE-960H-LV60-SELF, HUBERT-LARGE-LS960-FT)
MODELS.

System Baseline Combined

Kaldi TDNN 14.16 8.87
Wav2Vec2-large-960h-lv60-self 10.65 10.16
HuBERT-large-ls960-ft 10.67 10.99

reliance on pretrained acoustic invariance. HuBERT demon-
strated performance degradation, with WER increasing from
10.67% to 10.99%.

D. Fine-Tuning SSL Models

Fine-tuning SSL models on 8.3h of PFSTAR data (Ta-
ble V) achieved state-of-the-art results. Wav2Vec2-large at-
tained 7.70% WER (27.6% improvement over zero-resource
Wav2vec2 baseline), surpassing hybrid systems. HuBERT also
showed simialr improvements (10.67% → 7.84%) highlighting
the potential of these largely pre-trained SSL models when
training data is limited or scarce.

TABLE V
WER (%) FOR FINE-TUNED SSL MODELS ON THE PFSTAR DATASET (8.3

HOURS). THE TABLE COMPARES THE PERFORMANCE OF
WAV2VEC2-LARGE-960H-LV60-SELF AND HUBERT-LARGE-LS960-FT

AFTER FINE-TUNING.

Model WER (%)

Wav2Vec2-large-960h-lv60-self 7.70
HuBERT-large-ls960-ft 7.84

E. Key Insights

• Hybrid Systems: Achieve 8.87% WER (Table IV) with-
out child speech by combining in-domain text, speech
modifications, and HMM/DNN flexibility.

• SSL Models: Require fine-tuning but dominate with
labeled data (7.70% WER for Wav2Vec2-large in Ta-
ble V).

• Speech Modifications: Most impactful for hybrid sys-
tems (14.16% → 8.87%) and smaller SSLs (Wav2Vec2-
base: 36.50% → 32.71%).

• Architectural Trade-offs: Hybrid systems excel with
text/signal processing resources; SSL models require la-
beled child speech.

VI. CONCLUSION

Pretrained end-to-end models have transformed ASR for
adult speech, yet their application to children’s speech re-
mains challenging in zero-resource scenarios. This work
explores strategies to bridge the performance gap between
zero-resource and fine-tuned systems by integrating speech
modifications, in-domain text adaptation, and architectural
innovations. We demonstrate that while speech modifications
alone show limited effectiveness for self-supervised models,
hybrid HMM/DNN systems prove more adaptable, combining
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domain-specific language modeling and signal adjustments to
achieve competitive performance without child speech data.
Conversely, self-supervised models excel when minimal la-
beled children’s speech is available, underscoring their de-
pendency on targeted fine-tuning. These findings highlight the
importance of architectural and resource-aware design: hybrid
systems offer a pragmatic path for low-resource settings, while
self-supervised models prioritize efficiency when labeled data
is accessible. By addressing acoustic, linguistic, and structural
mismatches, this work advances equitable ASR solutions for
children’s speech, encouraging future research into adaptive
frameworks.

REFERENCES

[1] P. Vogt, M. de Haas, C. de Jong, P. Baxter, and E. Krahmer, “Child-
robot interactions for second language tutoring to preschool children,”
Frontiers in Human Neuroscience, 2017.

[2] R. Al-Ghezi, K. Vosboinik, Y. Getman, A. von Zansen, H. Kallio,
A. Clara, M. Kuronen, A. Huhta, and R. Hilden, “Automatic speaking
assessment of spontaneus l2 finnish and swedish,” Language Assessment
Quarterly, 2022.

[3] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Co-
hen, M. Kamvar, and B. Strope, “Your word is my command: Google
search by voice: A case study,” in Advances in Speech Recognition:
Mobile Environments, Call Centers and Clinics, 2010.

[4] K. J. Ballard, N. M. Etter, S. Shen, P. Monroe, and C. T. Tan, “Feasibility
of automatic speech recognition for providing feedback during tablet-
based treatment for apraxia of speech plus aphasia,” American Journal
of Speech-Language Pathology, 2019.

[5] K. Matthes, R. Petrick, and H. Hain, “Lingunia world of learning,” in
ISCA International Workshop on Speech and Language Technology in
Education, SLaTE 2015, Leipzig, Germany, September 4-5, 2015, 2015.

[6] R. Fan and A. Alwan, “Draft: A novel framework to reduce domain
shifting in self-supervised learning and its application to children’s asr,”
in Interspeech, 2022.

[7] R. Fan, Y. Zhu, J. Wang, and A. Alwan, “Towards better domain
adaptation for self-supervised models: A case study of child asr,” IEEE
Journal of Selected Topics in Signal Processing, vol. 16, no. 6, pp.
1242–1252, 2022.

[8] R. Jain, A. Barcovschi, M. Y. Yiwere, D. Bigioi, P. Corcoran, and
H. Cucu, “A wav2vec2-based experimental study on self-supervised
learning methods to improve child speech recognition,” IEEE Access,
vol. 11, pp. 46 938–46 948, 2023.

[9] J. Li, M. A. Hasegawa-Johnson, and N. L. McElwain, “Analysis of self-
supervised speech models on children’s speech and infant vocalizations,”
IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing Workshops (ICASSP), pp. 550–554, 2024.

[10] R. Jain, A. Barcovschi, M. Yiwere, P. Corcoran, and H. Cucu, “Adapta-
tion of whisper models to child speech recognition,” in INTERSPEECH,
2023.

[11] R. Jain, A. Barcovschi, M. Y. Yiwere, D. Bigioi, P. Corcoran, and
H. Cucu, “A wav2vec2-based experimental study on self-supervised
learning methods to improve child speech recognition,” IEEE Access,
vol. 11, pp. 46 938–46 948, 2023.

[12] A. Sinha, M. Singh, S. R. Kadiri, M. Kurimo, and H. K. Kathania,
“Effect of speech modification on wav2vec2 models for children speech
recognition,” in International Conference on Signal Processing and
Communications (SPCOM). IEEE, 2024, pp. 1–5.

[13] J. Driedger, M. Müller, and S. Ewert, “Improving time-scale modifi-
cation of music signals using harmonic-percussive separation,” IEEE
Signal Processing Letters, 2014.

[14] J. Laroche and M. Dolson, “Improved phase vocoder time-scale modi-
fication of audio,” IEEE Transactions on Speech and Audio Processing,
1999.

[15] H. K. Kathania, “Role of Prosodic Features and Prosody modification in
Improving Children Mismatched ASR,” Ph.D. dissertation, Department
of ECE, National Institute of Technology Sikkim, India, October 2018.

[16] S. Lee, A. Potamianos, and S. Narayanan, “Analysis of children’s
speech: duration, pitch and formants,” in Proc. 5th European Conference
on Speech Communication and Technology (Eurospeech 1997), 1997.

[17] S. Lee, A. Potamianos, and S. S. Narayanan, “Acoustics of children’s
speech: Developmental changes of temporal and spectral parameters,”
The Journal of the Acoustical Society of America, vol. 105, no. 3, pp.
1455–1468, March 1999.

[18] S. Ghai and R. Sinha, “Exploring the effect of differences in the acoustic
correlates of adults’ and children’s speech in the context of automatic
speech recognition,” EURASIP Journal on Audio, Speech and Music
Processing, 2010.

[19] S. Shahnawazuddin, N. Adiga, H. K. Kathania, and B. T. Sai, “Creating
speaker independent ASR system through prosody modification based
data augmentation,” Pattern Recognition Letters, 2020.

[20] X. Zhu, G. T. Beauregard, and L. L. Wyse, “Real-time signal estimation
from modified short-time fourier transform magnitude spectra,” IEEE
Transactions on Audio, Speech, and Language Processing, July 2007.

[21] H. K. Kathania, W. Ahmad, S. Shahnawazuddin, and A. B. Samaddar,
“Explicit pitch mapping for improved children’s speech recognition,”
Circuits, Systems, and Signal Processing, 2018.
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