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Abstract—Joint punctuated and normalized automatic speech
recognition (ASR) aims at outputing transcripts with and without
punctuation and casing. This task remains challenging due to
the lack of paired speech and punctuated text data in most ASR
corpora. We propose two approaches to train an end-to-end joint
punctuated and normalized ASR system using limited punctuated
data. The first approach uses a language model to convert
normalized training transcripts into punctuated transcripts. This
achieves a better performance on out-of-domain test data, with up
to 17% relative Punctuation-Case-aware Word Error Rate (PC-
WER) reduction. The second approach uses a single decoder
conditioned on the type of output. This yields a 42% relative
PC-WER reduction compared to Whisper-base and a 4% relative
(normalized) WER reduction compared to the normalized output
of a punctuated-only model. Additionally, our proposed model
demonstrates the feasibility of a joint ASR system using as little as
5% punctuated training data with a moderate (2.42% absolute)
PC-WER increase.

Index Terms—ASR, punctuated transcripts, RNN-T, limited
data, streaming ready

I. INTRODUCTION

Transcribing speech into text with punctuation and casing
has been an active area of research in automatic speech recog-
nition (ASR) [1]-[3]. According to some definitions, ! casing is
considered as part of punctuation. For notational simplicity, we
therefore refer to punctuated-cased ASR/transcripts as punctu-
ated ASR/transcripts in the rest of this paper. Joint punctuated
and normalized ASR, which produces transcripts both with and
without punctuation and casing, is highly desirable because
(a) it improves human readability (b) it extends compatibility
with natural language processing models that either exploit or
discard punctuation information, and (c) it simplifies model
deployment and maintenance.

The conventional punctuated ASR approach post-processes
normalized ASR output using a punctuation and case restora-
tion model [4]-[6], such as a modified Recurrent Neural
Network-Transducer (RNN-T) ASR [7] with a fine-tuned
language model (LM) [8]. While this avoids punctuated tran-
scripts in ASR training, it increases model size, inference time,
and lacks acoustic cues for punctuation. An alternative is end-
to-end (E2E) ASR, which directly generates punctuated tran-
scripts [9], [10]. A notable example is Whisper [11], trained
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on large-scale data. E2E punctuated ASR models are less
accurate in word recognition than equal-sized normalized ASR
models, leading to poorer normalized ASR performance [12],
[13] and increased computation time for output normalization.
To address this, [12] introduced an auxiliary connectionist
temporal classification loss for transcribing normalized text
at an intermediate layer, while [13] proposed three decoders
for spoken, written, and joint transcripts. These methods en-
able joint punctuated and normalized ASR without increasing
model size but require a fully punctuated ASR corpus for
training. Beyond punctuation and casing, [14] introduced a
transducer-based ASR with Inverse Text Normalization (ITN),
requiring a large training set and longer inference context [14],
[15], leading to higher latency and RTF. In contrast, we aim
to develop a low-latency, low-RTF E2E joint punctuated and
normalized ASR system.

Traditionally, ASR training corpora contain only normal-
ized transcripts, making them unsuitable for punctuated ASR
models. For example, the 900h CGN corpus [16], a major
Dutch ASR resource, lacks punctuated data. The 100h Dutch
CommonVoice corpus [17] includes punctuated transcripts but
consists of isolated sentences, limiting generalization to long
utterances. Audiobooks provide punctuated long-form speech,
but creating ASR corpora from them is challenging. The
Multilingual Librispeech corpus [18] has 1,500h of Dutch data
but only 40 speakers, and its transcripts are normalized. This
imbalance between punctuated and normalized ASR training
data poses a challenge for training an E2E joint punctuated
and normalized ASR model.

This paper proposes an E2E joint punctuated and nor-
malized ASR system that is (a) efficient in both tasks, (b)
trainable with limited punctuated labeled data, and (c) suitable
for streaming. We introduce and compare two complementary
approaches to train a stateless transducer-based E2E joint
punctuated and normalized ASR model. The first approach
uses an LM to generate punctuated training transcripts. How-
ever, such LMs may not be accurate enough or available
for certain domains [19] and/or languages. To address such
scenarios, we propose a second approach in which a single
decoder is conditioned on the type of output. Experimental
results show that our first method results in a 17% relative
error reduction, while the second method enables training with
an exceptionally low proportion of punctuated data.
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Fig. 1: (a) Stateless transducer-based punctuated ASR [12], (b) the proposed 2-Decoder (Joiner + Predictor) joint normalized-
punctuated ASR, (c) the proposed conditioned Predictor ASR, (d) input layers in the original and conditioned Predictors.

The paper is organized as follows. Section II presents
the preliminaries. Section III introduces our approaches. Sec-
tion I'V describes our experiments. We conclude in Section V.

II. PRELIMINARY OF STATELESS
TRANSDUCER-BASED PUNCTUATED ASR

An E2E punctuated ASR system [12] directly transcribes
speech into a punctuated transcript. Given an acoustic feature
sequence X € REXA where L is the sequence length and A
the feature dimension, the training objective is to maximize

the probability
H P 1/9 |y[1 is—1

by generating a sequence Yp € RS, where “P” stands
for punctuated transcription, and ST represents the punctuated
sequence length. The loss function can be written as

L == log P(Y"|X).

YP X

P(YPIX) = X) 1)

2

A stateless transducer-based E2E ASR system, which uses an
RNN-T framework [20] with a stateless prediction network
[7], can be readily extended to the punctuated transcription
task (see Figure 1(a)). Zipformer [21], a stateless transformer
encoder with downsampling and a zip-like structure, further
enhances efficiency while maintaining accuracy. This brings
the natural streaming recognition capability of RNN-T to
punctuated ASR.

III. PROPOSED METHODS

A. 2-Decoder joint normalized-punctuated ASR

Inspired by [12], [13], we design an ASR system with two
Decoders, each consisting of its own Predictor and Joiner (see
Figure 1(b)). Using the output of the same Encoder, these two
Decoders generate the punctuated and normalized transcripts.
Their respective training objectives are”

H P ye |y[1 s—1

prs‘yls 1]» )7

P(YNIX) = X), 3)

P(Y?|X) “4)

2These equations are kept consistent with (1) and do not account for the
stateless and/or streaming operation of the transducer model.

where “N” stands for normalized transcription, and SN repre-
sents the normalized sequence length. The joint loss function
is defined as

£2—dec0der _ LN 4 £P 4)
=— Z log P(YN|X) — Z log P(Y"|X).
YN X YP, X

B. Training ASR using auto-punctuated transcripts

Automatically generated punctuated transcripts of ASR
training data can be used to train punctuated ASR models in
the absence of human-generated punctuated transcripts. To the
best of our knowledge, the use of auto-punctuated transcripts
to train punctuated ASR models has been unexplored in prior
works. The work in [10] proposed a semi-supervised rich ASR
training method in which a rich ASR system is first trained on
a small amount of human-labeled rich training data and then
used to automatically generate auto-rich transcripts of a larger
unlabeled speech corpus. This approach focused on the rich
transcription of speech phenomena such as fillers, laughter,
coughs, etc., hence some human-labeled data is necessary.
By contrast, our transcription task focuses on punctuation
and casing. Punctuation- and case-enhanced transcripts can
be directly obtained from normalized transcripts using state-
of-the-art punctuation and case restoration models [4]-[6].
Interestingly, this approach can be applied in scenarios where
there is no punctuated labeled training data at all.

C. Conditioned Predictor ASR

A drawback of the auto-punctuated transcription-driven
ASR training approach presented above is that errors made
by the punctuation and case prediction model may propagate
into the punctuated ASR model. Moreover, such case and
punctuation restoration models may not be accurate enough,
or even available, for certain domains [19] and/or languages.
Hence, we propose a second training approach to address such
scenarios.

Our approach effectively utilizes the small amount of
punctuated training data and the large amount of normalized
training data by using a single conditioned Predictor to handle
both punctuated and normalized transcriptions. As shown in
Figure 1(c), the Predictor is conditioned on the transcription
mode ID, which is an input that specifies whether we want
a normalized (N) or punctuated (P) output. The mode ID
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input is inspired by the language ID information used by E2E
multilingual ASR models [22], [23]. As shown in Figure 1
(d), the token embeddings are concatenated with the mode
embedding before feeding them to the following Predictor
layers. The Conditioned Predictor ASR system can use a
loss function similar to Equation (4). However, only part of
the input samples will have a punctuated reference transcript
and will use the corresponding loss. This could lead to
uneven model performance between the two output modes,
particularly poor performance of the punctuated transcription
mode. To address this issue, we employ a tradeoff parameter
« to adjust the weights of £N and LF, as follows:

Econd—predictor _ (1 _ a)EN + Oé,CP. (7)

IV. EXPERIMENTS

This section details our experimental setup and results. For
reproducibility, our code is available online.

A. Dataset and metrics

1) Dataset: We conduct experiments on LibriSpeech [24],
using train-960 for training, dev-clean/dev-other for validation,
and test-clean/test-other for testing. We retrieve the punctuated
transcripts of LibriSpeech from the original Project Gutenberg
texts.* Erroneous sentences, such as fully uppercase chapter
names, are removed. A recent work on building a punctuated
Librispeech corpus [25] has detailed retrieval steps similar
to those we have developed independently. To evaluate the
model’s performance on real unseen data, we use the Com-
monVoice [26] English clean test set and independent headset
microphone recordings of the AMI meeting corpus [27] test
set along with their original punctuated transcripts.

2) Metrics: The standard Word Error Rate (WER) is insuf-
ficient for evaluating punctuated transcription. Traditionally,
Precision, Recall, and F1 scores have been used [5], [6],
but they report separate scores for punctuation marks and
lack a standardized casing metric. Recent work [25] pro-
posed adapted error rate metrics for punctuation and case,
underscoring the need for improved evaluation. However, case
error rates are missing, and punctuation error rates include
word errors, failing to isolate punctuation-specific mistakes.
To better assess punctuation and casing performance and
standardize error comparisons, we introduce Punctuation-only
Error Rate (PuncER), Case-only Error Rate (CaseER) and
Punctuation-Case-aware WER (PC-WER) alongside the WER.
These metrics are calculated as:

Eyne — Enp. Enpc — Enp.
P ER = p-nc np-nc C ER = np-c np-nc
unc 7]\@, s ase 7]\% ,
E,. Enp.
PC-WER = =, WER = —2%¢ (8)
N,
p-¢ np-nc

where F represents the total number of substitution, deletion,
and insertion errors, and N represents the total number of

words, punctuation and/or casing marks. Suffixes “p” and “c”

3https://github.com/can-cui/punctuated-normalized-asr
4Available at https://www.openslr.org/12/

stand for the presence of punctuation and casing whereas
suffices “np” and “nc” stand for the absence of punctuation
and casing, respectively.

To evaluate inference speed in streaming, we use Real-
Time Factor (RTF), defined as inference time divided by audio
length. For Whisper models, we load them once and process
test audio sequentially. For transducer-based models, we ex-
port to ONNX and follow the same process. RTF is measured
during CPU-based inference for punctuated transcription.

B. Model and training setup

We use 80-dimensional log Mel filterbank features as input
for all ASR models and a SentencePiece tokenizer [29] with a
500-word vocabulary. Pretrained Whisper models [11] serve as
baselines: Whisper-base (74M parameters) for comparability
and Whisper-small (244M) for high-performance reference.
Our ASR models (E2E ASR, 2-Decoder ASR, Conditioned
Predictor ASR) follow the pruned stateless-transducer recipe
with a Zipformer encoder in icefall.> For Conditioned Pre-
dictor ASR, Token Embedding F; and Mode Embedding F»
have 500 and 12 dimensions, respectively. All models were
trained for 40 epochs on 4 Nvidia RTX 2080 Ti GPUs, with
inference on an Intel Xeon Gold 5218R CPU.

We use the Rpunct [30] model to generate punctuated
transcripts from normalized transcripts. This model is derived
from the BERT [31] LM after fine-tuning it for English
punctuation and case restoration tasks.

C. Evaluation results

1) Effectiveness of E2E models: Table I presents the error
rates on in-domain test sets of our ASR models. First of
all, the transducer-based ASR models demonstrate superior
performance compared to Whisper models. Specially, our
proposed Conditioned Predictor ASR achieves a PC-WER
reduction of up to 42% relative (from 15.96% to 9.32%)
compared to Whisper-base, which is of comparable size, and
15% relative (from 10.95% to 9.32%) compared to Whisper-
small. For the transducer-based ASR models, the conventional
cascaded system, which uses a normalized output ASR model
followed by a punctuation and case restoration LM, is included
as a baseline. Comparison of error rates of the cascaded system
and E2E models trained using punctuated data shows that
the latter can lead to significant reductions in PC-WER. For
instance, when using the 2-Decoder ASR model (P + N)
we obtain a relative PC-WER reduction of up to 24% (from
11.70% to 8.85%).

When comparing the 2-Decoder ASR model with the pro-
posed Conditioned Predictor ASR model on the LibriSpeech
test set, the latter exhibits a decrease in PuncER. For example,
when using the same P + N training set, the Conditioned
Predictor ASR model achieves a relative decrease of 3% on
test-clean and 5% on test-other in PuncER compared to the
former. But 2-Decoder ASR has a better performance in terms

Shttps://github.com/k2-fsa/icefall/blob/master/egs/librispeech/ASR/pruned_
transducer_stateless7
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TABLE I: Error rates (%) on in-domaint test data for all the ASR models trained on LibriSpeech train-960 with different types
of transcripts (Trans): normalized (N), original punctuated (P), or auto-punctuated (P'). All the test ground truth transcripts are
the original punctuated transcripts. The 2-Decoder ASR and the Conditioned Predictor ASR systems use both punctuated (P
or P') and normalized (N) transcripts for the entire train-960 set.

Config ID ‘ ‘ # Param ‘ Trans ‘

LibriSpeech test-clean |

LibriSpeech test-other | RTF

Type of ASR
| | | | WER PuncER CaseER PC-WER | WER PuncER CaseER PC-WER |
0 Whisper-base 74 M - 5.80 33.86 32.04 15.96 13.02 36.79 27.72 19.48 0.09
1 ‘Whisper-small 244 M - 4.40 31.19 28.49 10.95 11.89 32.17 25.67 17.59 0.23
2 Cascaded (ASR+LM) 180 M N 2.18 44.33 35.60 11.70 5.03 47.69 34.82 14.91 0.79
3 Punctuated only (a) 70 M P 2.45 30.39 28.21 9.12 5.73 30.51 25.14 11.94 0.45
4 70 M P 2.35 4443 31.42 11.60 5.49 47.39 30.14 14.94 0.44
5 2-Decoder (b) 71 M P+N| 233 29.99 26.99 8.85 5.45 31.05 24.76 11.76 0.58
6 71 M P+ N | 2.28 45.10 31.68 11.67 5.38 47.81 29.53 14.88 0.59
7 Cond Predictor (c) 70 M P+N| 235 29.14 35.61 9.32 5.49 29.62 30.77 12.01 0.44
8 70 M P+ N | 225 44.60 41.86 12.30 5.24 46.84 33.99 15.42 0.45

t: For Whisper, it is unknown whether the test data is in-domain or out-of-domain due to the lack of training data information.
Note: We employed the SCTK toolkit [28] to conduct Matched Pair Sentence Segment statistical significance tests adapted to the four metrics. In all the
tables, we highlight in bold the best result in each column and the results statistically equivalent to it at a 0.05 significance level.

of case generation, by reducing the CaseER by 24% relative
on test-clean (from 35.60% to 26.99%).

Furthermore, the proposed Conditioned Predictor ASR gives
both normalized and punctuated outputs. The normalized out-
put shows a 4% relative reduction in WER on test-clean (from
2.45% to 2.35%) and test-other (from 5.73% to 5.49%). This
demonstrates that using a dual-output ASR model yields better
performance for normalized output compared to normalizing
a Punctuated-only ASR model.

Additionally, from the perspective of inference speed, all
transducer-based ASR models achieve an RTF lower than 1,
although they are higher than Whisper models. Notably, the
proposed Conditioned Predictor ASR model has the lowest
RTF, which is 0.35 lower (from 0.79 to 0.44) than the tradi-
tional cascaded system and 0.15 lower (from 0.59 to 0.44) than
the 2-Decoder model, while maintaining similar performance.
The Punctuated-only model has an RTF comparable to the
Conditioned Predictor model, but this value will increase if
normalization of the ASR output is required.

2) Original vs. auto-punctuated transcripts for training:
Table II displays the test results on the CommonVoice and
the AMI test sets. On out-of-domain test sets, our transducer-
based models still outperform Whisper models, with a relative
lower PC-WER up to 38% (from 73.27% to 45.24%).

Comparing Table I and Table II reveals key insights on
original vs. auto-punctuated training data. E2E ASR trained on
original punctuated transcripts achieves lower punctuation and
case error rates on in-domain LibriSpeech test sets, while using
auto-punctuated training transcripts improves performance on
out-of-domain CommonVoice and AMI test sets. For exam-
ple, the 2-Decoder ASR model shows a 32% relative PC-
WER increase (from 8.85% to 11.67%) on test-clean and
27% (from 11.76% to 14.88%) on test-other when using
auto-punctuated training transcripts (P'+N) instead of original
transcripts (P+N).

Howeyver, the same model exhibits a PC-WER reduction of
17% relative (from 35.79% to 29.70%) on the CommonVoice
test set and 9% relative (from 50.18% to 45.43%) on the AMI
test set when using auto-punctuated training transcripts. The

TABLE II: Error rates (%) on out-of-domain test sets for all
the ASR models. The ID column corresponds to the config
ID in Table I, which specifies the ASR type and transcription
used for training.

ID‘ CommonVoice test-clean | AMI test
‘WER PuncER CaseER PC-WER‘WER PuncER CaseER PC-WER

0 [38.06 34.03 11.09 38.99 |71.72 64.22 39.84 73.27
113790 36.72 10.56 39.15 58.49 5299 36.48 60.12
212790 2791 11.63 29.50 |37.46 74.84 45.92 45.99
3129.23  64.87 16.47 36.61 [39.59 97.02 38.57 50.61
4 (27.81 27.28 11.42 29.27 |39.01 71.82 37.39 46.33
512844 64.35 16.04 35.79 [39.12 96.48 39.44 50.18
6 |28.35 27.65 10.83 29.70 |39.33 65.63 33.64 45.43
7 128.57 60.35 23.21 36.35 [40.70 96.40 38.40 51.47
8 127.84 2744 11.34 29.65 |38.77 65.65 35.62 45.24

differences mainly stem from the addition of case and punctu-
ation. Models trained with auto-punctuated transcripts show a
lower PuncER and CaseER. Specifically, for the Conditioned
Predictor model on the CommonVoice test set, the PuncER
reduction can be as high as 54% relative (from 60.35% to
27.44%), and the CaseER can be reduced by up to 51%
relative (from 23.21% to 11.34%) when using auto-punctuated
transcripts. This could be explained by the inconsistent (and
sometimes erroneous) punctuation in LibriSpeech ground truth
punctuated transcripts. By contrast, being trained on a wide
range of domains, the LM outputs a better (possibly domain-
dependent) punctuation than that learned on the specific Lib-
riSpeech domain on average.

3) Conditioned Predictor ASR with limited punctuated
data: Unlike the 2-Decoder ASR model, the Conditioned
Predictor ASR model can be trained with different proportions
of punctuated and normalized training data. To evaluate the
effectiveness of this capability, we trained the Conditioned
Predictor ASR model with different proportions of punctuated
and normalized (P + N) training data. Table III presents the
error rates obtained on the LibriSpeech test-clean set. It can
be observed that the PC-WER and PuncER increase by small
margins even when the amount of punctuated training data
is reduced drastically. Using only 5% of punctuated training
data can still achieve a PC-WER of 11.46%, ie., a 2.42%
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TABLE III: Error rates (%) of Conditioned Predictor ASR (c)
on LibriSpeech test-clean when using different proportions of
punctuated and normalized (P + N) training data.

(P : N) Proportion WER PuncER CaseER PC-WER

0.50 : 0.50 2.38 29.33 34.86 9.32
0.35: 0.65 2.37 28.99 45.44 9.95
0.20 : 0.80 2.34 29.96 56.37 10.83
0.05 : 0.95 2.56 31.59 58.58 11.46

absolute increase. This shows that the Predictor-Conditioned
ASR model learns to generalize punctuation patterns from
limited examples by leveraging normalized text and acoustic-
text alignment. Therefore, this model can serve scenarios
having limited or severely limited punctuated training data.

V. CONCLUSION

In this paper, we introduced two approaches for training a
stateless transducer-based E2E joint punctuated and normal-
ized ASR model with minimal punctuated labeled data. The
first approach leverages a language model to generate auto-
punctuated transcripts, achieving up to 17% relative PC-WER
reduction on out-of-domain data compared to training on punc-
tuated data. The second approach uses a Conditioned Predictor,
enabling efficient dual-output ASR. Our Conditioned Predictor
model reduces PC-WER by 42% relative to Whisper-base with
a similar parameter count. This approach proves feasible with
as little as 5% punctuated training data, incurring only a 2.42%
absolute error increase.
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