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Abstract—In this paper, we propose a novel self-supervised
speaker diarization framework built upon iterative hybrid hi-
erarchical clustering and conformer-based deep representational
learning. The proposed network is trained with x-vectors using
contrastive loss derived from pseudo-labels generated in the
previous step, while the clustering algorithm utilizes latent vectors
from the representation network to generate the pseudo-labels.
While state-of-the-art diarization systems typically use agglomer-
ative hierarchical clustering (AHC) for all clustering iterations,
our approach first applies first-integer neighbour clustering
hierarchy (FINCH) to generate a reduced and refined set of
initial pseudo-labels, followed by AHC. The proposed conformer-
based hybrid clustering model, employing the FINCH+AHC
combination, achieves a DER of 10.69% on the CallHome dataset
with faster convergence, significantly outperforming the AHC-
only system with a relative improvement of 8.69%. This demon-
strates that effective initial learning and high-quality speaker
embeddings can enhance the performance of self-supervised
learning (SSL) systems.

Index Terms—speaker diarization, x-vectors, self-supervised
learning, conformer, hybrid clustering, FINCH

I. INTRODUCTION

Speaker diarization, the task of identifying “who spoke
when” in a multi-participant audio recording [1], has garnered
significant attention in the speech community owing to its
importance in the areas of automatic speech recognition [2],
meeting transcriptions and analysis, audio forensics, surveil-
lance etc [3]. However, the performance of speaker diarization
systems is adversely affected by overlapping speech, brief
speaker turns, speaker similarity etc. Despite these challenges,
the field has made significant progress in recent years, driven
by advancements in deep learning techniques.

Speaker diarization system typically consists of a
voice/speech activity detection module (VAD/SAD), a speech
segmentation module, and an embedding extraction module
followed by a clustering module. Speaker-specific embed-
dings such as i-vectors [4], d-vectors [5], or x-vectors [6]
are extracted from short speech segments and subsequently
clustered to assign speaker-specific labels. Over the years,
speaker embeddings used in diarization have evolved [7], [8],
yet many state-of-the-art systems still rely on unsupervised
clustering methods like agglomerative hierarchical clustering
(AHC), [7], [9], [10], spectral clustering [11], Bayesian HMM
[12] etc for generating diarization results.

Recently, SSL techniques have emerged as a promising
approach for leveraging unlabeled data to learn more dis-

criminative and informative representations than traditional
unsupervised techniques. SSL methods focusing on joint op-
timization of speaker embeddings and clustering algorithms
have been widely explored. Most of the previous works in
SSL based audio processing focused on optimizing clustering
strategies, representational neural networks, and non-clustering
loss functions [13]. In SSL based speaker diarization, graph-
based clustering strategies have been proposed in [14], [15]
for grouping speaker embeddings. Prachi et al utilizes path
integral clustering in [16], [17] while [18] employs AHC
to cluster the embeddings. In [19], a trained encoder model
is used to self-generate pseudo-labels. Both triplet loss and
contrastive loss [20], [21] are incorporated as non-clustering
loss functions within an SSL framework. Furthermore, [22]
explores the use of dynamic triplet loss and multinomial loss
for improved representation learning. However, limited works
have investigated the significance of initial learning and its
impact on the overall self-supervised learning process.

In this work, we propose an SSL system based on deep rep-
resentational hybrid clustering framework designed to improve
initial learning and quality of speaker embeddings. This work
is inspired by Prachi et al [18] where AHC is used for deriving
the pseudo-labels in all the iterations of an SSL framework. In
our approach, to improve initial learning, we employ a combi-
nation of FINCH [23] and AHC and the proposed approach is
applied on the refined speaker embeddings generated by the
conformer architecture. Clustering the refined pseudo-labels
constitutes the forward pass, while updating the representation
framework parameters corresponds to the backward pass in
the recurrent framework. With this enhanced FINCH+AHC
based recurrent framework, we aim to achieve strong speaker
embeddings and generate distinct, accurate speaker clusters.

II. SYSTEM DESCRIPTION

This section describes the proposed self-supervised speaker
diarization framework built on FINCH+AHC hybrid clustering
and the baseline system based on single clustering strategy.

A. Proposed Approach

The proposed approach using FINCH+AHC hybrid cluster-
ing is shown in Fig 1. X-vectors generated for 0.75s audio
segments are given as input to the self-supervised recurrent
framework. X-vector extraction is given in more detail in
section III B. Algorithm 1 outlines the implementation of the
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Fig. 1: Proposed self-supervised speaker diarization architecture based on conformer embeddings and FINCH+AHC.

proposed approach. The recurrent framework consists of two
modules - deep representation learning module (DRLM) and
hierarchical clustering module (HCM).
Deep representation learning module (DRLM): DRLM
(DNN or Conformer) maps raw x-vectors X to more refined
latent x-vectors Y using a non-linear mapping f and learnable
parameters θ, fθ: X → Y. Thus, x-vectors from higher-
dimensional (D) input feature space is mapped to a lower-
dimensional (d) cluster-friendly latent embedding space.
Hierarchical clustering module (HCM): Here, the latent
vectors are grouped using a clustering algorithm to generate
pseudo-labels, which are fed as supervised labels for the
next iteration. Our contribution is the introduction of FINCH
algorithm for the generation of initial pseudo-labels. Y 0 from
DRLM is given as input to the initial block in HCM which
generates the initial set of cluster labels C0. FINCH generates
a more refined set of cluster labels and is based on first-
neighbour relations. The algorithm generates hierarchical par-
titions with high purity. Hence, FINCH generates less number
of initial clusters than AHC as the algorithm in its earlier
stages emphasizes on nearest neighbours and local structure,
whereas AHC’s purity depends more on the linkage and
affinity strategies chosen for merging clusters. It also possesses
low computational overhead and is extremely fast.

FINCH is well-suited for speaker diarization tasks for three
reasons: (i) it does not require apriori knowledge on the
number of clusters; (ii) it produces clusters with very high
purity; and (iii) it is both fast and scalable. FINCH clustering
starts with creating an adjacency link matrix for each data
sample.

A(i, j) =

{
1 if j = κ1

i or κ1
j = i or κ1

i = κ1
j

0 otherwise
(1)

where κ1
i denotes the first neighbour of sample i. The

adjacency matrix links each sample i to its first neighbour
via j =κ1

i , enforces symmetry through κ1
j = i, and links

samples ( i, j) that share a common neighbour with κ1
i =

κ1
j . Equation 1 combines both 1-nearest neighbour (1-nn)

and shared nearest neighbour (SNN) graphs. Clustering is
performed by identifying the connected components in the
adjacency matrix.

In all the subsequent iterations, AHC is used as the clus-
tering algorithm to generate the pseudo-labels. The iteration
continues until the stopping criterion is satisfied: the number
of unique clusters in the current step, Ci equals the target
number of speakers N∗

c and the ratio of current loss to
initial loss always remains below a specified threshold. Neural
networks are trained using triplet or contrastive loss, computed
based on the pseudo-labels generated in the previous iteration.
Contrastive loss is calculated using

L = (1− y)d2W + y(max(0,m− dW ))2 (2)

where L is the contrastive loss, y is the label (0 for similar
pairs, 1 for dissimilar pairs), dW = ∥a−p∥2 is the Euclidean
distance (L2 norm) between the anchor (a) and the paired
embedding (p), m is the margin enforcing separation for
dissimilar pairs.

Integrating FINCH with AHC helps to utilize the strengths
of both algorithms. Introduction of FINCH reduces the overall
complexity as the initial clustering reduces the number of
clusters that AHC needs to process. Thus this hybrid clustering
framework can ensure better clustering performance compared
to using either algorithm alone.

B. Baseline System

In this work, deep self-supervised hierarchical clustering
discussed in [18] is used as the baseline system. We conducted
experiments with x-vectors of 512D using four layer DNN
architecture. Low-dimensional latent x-vectors, Y, resulting
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from DRLM module are fed as input to the HCM module.
HCM uses AHC algorithm in all the iterations and generates
a set of pseudo-labels, C. These pseudo-labels serve as super-
visory signals for the next iteration, where the DNN is trained
by minimizing the triplet loss computed from the previous
pseudo-labels. The process of recurrently updating the DNN
parameters and pseudo-labels continues until the stopping
criterion given in section II A is satisfied. The AHC follows
a bottom-up clustering approach, where the metric affinity
measure defines the pairwise similarity between clusters, and
the similarity measure determines the distance between x-
vectors. AHC merges two clusters Ca and Cb based on the
affinity measure A between two clusters. Mathematically, it is
represented as:

{Ca, Cb} = argmax
Ci,Cj∈C,i̸=j

A (Ci, Cj) (3)

where C = {C1, . . . , CS}, S- number of segments.

Algorithm 1: SSL framework using FINCH+AHC

1 Input: X= {x1,x2,......xS} ∈ RS×D: x-vectors with
dimension D extracted from S audio segments

2 N∗
c = target number of clusters (speaker labels)

3 threshold ∈ (0, 1]
4 Output:
5 Ci = Final cluster labels for each segment
6 θ = NN parameters.
7 Procedure:
8 Initial Clustering:
9 i=0

10 θ0 : initial NN parameters for PCA reduced x-vectors
11 Y 0 = {y01, y02 , . . . , y0S}∈ RS×d, initial low-dimensional

latent vectors, where d ≪ D.
12 C0 = {c01,c02,......c0S} ← FINCH(Y0)
13 L0 = initial contrastive loss computed using C0

1) Repeat:
a) i← i+ 1

b) Update NN parameters: θi Li−1

←−−− θi−1

c) Y i ←− θi(X)
d) Ci = {ci1,ci2,......ciS} ← AHC(Yi)
e) Compute contrastive loss (Li) using Ci

2) Until: number of distinct clusters in Ci equals N∗
c

and (Li/L0) <= threshold

III. PERFORMANCE EVALUATION

A. Dataset

CallHome (CH) English corpus [24] is used for the experi-
ments. The corpus includes 120 unscripted telephone conver-
sations between native English speakers, with each recorded
conversation lasting 30 minutes. A subset of CH dataset is
chosen for the experiments. The proposed approach is applied
independently on each input audio. Voiced audio samples are
split into 0.75s duration segments.

TABLE I: Conformer architecture for input shape (x,512),
x - batch size.
No Layer Output Shape
1 Input Layer (x,512)
2 Multi Head Self Attention (x,1,512)
3 Conv1D (x,1,512)
4 GlobalAveragePooling1D (x,512)
5 Dense (x,30)

B. Experimental Setup

The experimental setup involves following steps:
Separation of voice segments: Speech activity

detection is first applied to the input audio recordings to
remove un-voiced segments. Then, overlap detection is con-
ducted to discard segments with speakers’ overlap. Resulting
audio samples are splitted into 0.75s speech segments.
X-vector extraction: X-vectors extraction is done

using a pre-trained model from SpeechBrain [25]. Model
utilizes a TDNN architecture with statistical pooling and is
trained on the VoxCeleb1 and VoxCeleb2 datasets sampled
at 16kHz, containing 7205 speakers, using categorical cross-
entropy as the loss function. For each 0.75s segment of the
audio, x-vector embeddings of 512 dimensions are extracted.
SSL with AHC: For single clustering strategy based on

AHC, we have conducted experiments with DNN and con-
former. Baseline DNN architecture has four layers (512, 256,
64 and 30) with L2 normalization and ReLU activation at each
layer, trained using triplet loss. The first layer is initialized
with whitening transform, and the final layer with principal
components obtained from PCA for better convergence. Next
to evaluate the impact of high-quality embeddings on the
recurrent network, DNN is replaced by conformer. Table
I details the conformer architecture used. Multi-head self-
attention (MHSA) uses eight attention heads with 64 as the
key dimension. The use of MHSA as well as 1D convolutional
layer enables the conformer to capture the long-term as well
as local dependencies in input audio. Finally, L2 normalization
is applied to generate well defined high-quality latent vectors.
For each iteration of the recurrent framework, neural networks
are trained using pseudo-labels and triplet/contrastive loss cal-
culated from previous step. The value of margin for contrastive
loss is chosen as one. The resulting latent x-vectors are in
turn, given to the AHC algorithm until the network satisfies
the stopping criterion.
SSL with FINCH+AHC: Proposed Model-1 (DNN)

and Proposed Model-2 (Conformer) are implemented with
FINCH+AHC hybrid clustering. Both models follow the same
architecture as in SSL with AHC. Y 0, initial latent x-vectors,
are given as input to the FINCH algorithm. FINCH generates
an initial set of high-purity pseudo-labels, C0, with cosine as
distance measure. We have used clusters from the first partition
as C0. The loss is computed using C0, and gradients are back
propagated to update the model’s weights. Experiments are
performed using both triplet and contrastive loss.

For all the experiments, Adam is chosen as the optimizer
with a learning rate of 1e−3 and a patience of ten for
early stopping. The stopping criterion enables the network to
converge to a 2-speaker system while simultaneously ensuring
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(a) Number of clusters formed for C0, Ci+k and Ci = N∗
c for AHC.

(b) Number of clusters formed for C0, Ci+k and Ci = N∗
c for FINCH+AHC hybrid clustering.

Fig. 2: Comparison of cluster formations using AHC and Proposed Model 2 (FINCH+AHC) for threshold = 0.5 using conformer architecture.

TABLE II: DER for proposed approaches using contrastive loss.
No System Approach DER%
1 D.Snyder et al [26] x-vector+AHC 26.07
2 P. Singh et al (DNN) [18] (Baseline) DNN+AHC 19.38
3 P. Singh et al (Conformer) Conformer+AHC 13.61
4 Proposed Model-1 DNN+FINCH+AHC 16.61
5 Proposed Model-2 Conformer+FINCH+AHC 10.69

Fig. 3: Loss convergence of Conformer+AHC and Proposed Model2
(FINCH+AHC) using contrastive loss for threshold = 0.5.

that the loss in each iteration remains below the threshold.
The value of threshold is empirically chosen as 0.5 based
on ablation studies. All experiments are implemented using
Keras-Tensorflow and the execution environment runs on
Google Colab and utilizes NVIDIA T4 Tensor Core GPUs.

IV. RESULT ANALYSIS

Diarization error rate (DER) [27] is used as the perfor-
mance metric for evaluation. Table II shows DER obtained
for proposed approaches using contrastive loss. Unsupervised
learning using AHC gives a DER of 26.07% with cosine
as the cluster similarity measure and average linkage as the
affinity measure. Model-1 reports a DER of 16.61%. Thus
the introduction of FINCH has given a relative improvement
of 2.77% than the DNN based baseline system (19.38%).

Fig. 4: DER for Proposed Model 2 for various number of attention
heads and key dimension in the conformer architecture.

This improvement attributes to the ability of FINCH in
generating high purity clusters thereby reducing the initial
number of clusters, thus facilitating faster convergence and
improved clustering. Conformer+AHC achieved a DER of
13.61%, demonstrating that high-quality embeddings can im-
prove DER, due to the ability of conformer to capture and
learn long-term dependencies and local features of speech.
Experiments with Model-2 further reduced DER to 10.69%,
a remarkable relative improvement of 8.69% than the baseline
system. Fig 2 illustrates the effectiveness of using hybrid
FINCH+AHC clustering. It is worth noting that the initial
number of clusters has reduced from 14 to 7 for Model-2, a
notable improvement over conformer+AHC. Fig 3 shows the
loss convergence for conformer+AHC and Model-2. With
fewer initial clusters, Model-2 achieves faster convergence
in fewer epochs, leading to a sharper loss reduction and
faster stabilization compared to the conformer+AHC approach.
DER% obtained for various MHSA configurations in the
conformer architecture of Model-2 is shown in Fig 4. Lowest
DER is reported when number of attention heads is 8 and
key dimension is 64, efficiently dividing the 512D input,
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TABLE III: DER for various losses.
No System Loss DER%
1 P.Singh et al (DNN) [18] (Baseline) Triplet 19.38
2 P.Singh et al (Conformer) Triplet 14.15
3 Proposed Model-1 Triplet 18.00
4 Proposed Model-2 Triplet 12.38
5 P.Singh et al (Conformer) Contrastive 13.61
6 Proposed Model-1 Contrastive 16.61
7 Proposed Model-2 Contrastive 10.69

Fig. 5: DER at different thresholds for proposed models using con-
trastive loss.

with each head processing a 64D subspace, ensuring efficient
feature extraction. Table III summarizes the experiments on
non-clustering loss. Model-1 and Model-2 achieve lowest
DER of 16.61% and 10.69%, respectively, for contrastive loss.
This improvement shows that contrastive loss has efficiently
optimized speaker embeddings than triplet loss, thus enhancing
speaker separation. Fig 5 shows that Model-1 and Model-2
achieves the lowest DER at a threshold of 0.5.

V. CONCLUSION

This work proposed a novel self-supervised deep hybrid
clustering model for speaker diarization, emphasizing the
importance of initial learning and the necessity of high-quality
speaker embeddings. We integrated FINCH and AHC with
conformer-based embeddings to improve SSL performance.
While the baseline system reports a DER of 19.38% on
CallHome dataset, our contrastive loss based proposed ap-
proaches achieves a DER of 16.61% (Model-1) and 10.69%
(Model-2) respectively, a notable improvement of 8.69%
over the baseline, with faster convergence. From the metrics, it
is clear that the proposed approaches can significantly enhance
the performance of speaker diarization systems.
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