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Abstract—Speech emotion recognition (SER) involves classi-
fying emotional states from speech signals based on acoustic
characteristics. Although recent advances in transformer-based
models achieve state-of-the-art performance through large-scale
pretraining on diverse datasets, their computational require-
ments limit practicality in low-resource settings. CNN-based
approaches with attention mechanisms have been proposed to
balance computational efficiency and performance but often
struggle to extract robust features in challenging acoustic envi-
ronments. To address these limitations, we propose LANCET,
a lightweight attention-enhanced network for robust emotion
recognition under diverse recording conditions. LANCET inte-
grates multiscale channel-wise attention to focus on noise-resilient
spectral features, Temporal Convolutional Network (TCN) to
model short-term and long-term temporal dependencies, and
frame-wise attention to prioritize frames relevant for speech
emotion recognition. Experiments on the IEMOCAP corpus,
including its subsets: improvisation, script, and full, used clean
and augmented datasets with babble, music, and ambient noise.
Results demonstrate that LANCET outperforms CNN-based
methods and achieves superior performance compared to Hu-
BERT, a transformer-based model, in both clean and challenging
conditions, showcasing robustness, effectiveness, and efficiency
with fewer parameters. The code for LANCET is available at
https://github.com/YassinTERRAF/LANCET.

Index Terms—Speech Emotion Recognition, Attention Mecha-
nism, Temporal Convolutional Network, Noise Robustness, Chal-
lenging Acoustic Environments.

I. INTRODUCTION

Speech emotion recognition (SER) is the process of iden-
tifying emotional states from speech signals through the
extraction and analysis of acoustic patterns. Accurate SER
is essential for improving human-machine interaction and
has wide-ranging applications in fields such as education
[1], healthcare [2], and customer service, where understand-
ing emotional states improves communication and decision-
making. Recent advances in SER have focused mainly on
transformer-based models, such as HuBERT [3] and WavLM
[4], which leverage large-scale pretraining on diverse datasets.
This pretraining enables these models to learn rich con-
textual representations of speech signals, which are critical
for effective emotion recognition. However, their reliance on
substantial computational resources makes them less practical
for deployment in resource-constrained environments, such as
mobile or embedded devices [5]. Alternatively, CNN-based
approaches that incorporate attention mechanisms have been
proposed to achieve a balance between good performance and
reduced computational complexity [6]–[8]. Moreover, these
approaches are typically evaluated in controlled environments
using noise-free speech signals, which do not accurately reflect

real-world conditions where background noise can signifi-
cantly degrade emotional cues. This gap in evaluation settings
limits their robustness and practical applicability in scenarios
involving noisy or unpredictable acoustic environments.

To address these limitations, we propose LANCET, a
novel lightweight attention-enhanced CNN-based network for
emotion recognition. LANCET integrates multiscale channel-
wise attention to dynamically enhance noise-resilient spec-
tral features by weighting frequency channels according to
their relevance. These refined spectral features are further
processed by Temporal Convolutional Network (TCN), which
models temporal patterns on varying time scales to capture the
emotional dynamics of speech. Finally, frame-wise attention
highlights the most emotionally salient frames, producing a
robust feature representation that performs effectively in both
clean and challenging acoustic environments.

The main contributions of this paper can be summarized as
follows.

• We introduce LANCET, a novel lightweight attention-
enhanced CNN-based emotion recognition network that
integrates multiscale channel-wise attention, TCN, and
frame-wise attention to improve emotion recognition un-
der diverse acoustic conditions.

• We augment the IEMOCAP dataset with various noise
types, including babble, music, and ambient noise, ap-
plied at different Signal-to-Noise Ratio (SNR) levels, to
simulate real-world conditions and evaluate the robust-
ness of the proposed method.

• Extensive experiments were conducted on the IEMOCAP
dataset and its augmented versions, demonstrating the
effectiveness of the proposed approach in both clean and
challenging acoustic environments.

The remainder of this paper is organized as follows: Section
II describes the proposed LANCET approach. Section III
presents the experimental results, and Section IV concludes
the paper.

II. METHODOLOGY

This section presents the proposed LANCET architecture.
As illustrated in Figure 1, LANCET integrates three core
components: multiscale channel-wise attention, TCN blocks,
and frame-wise attention.

A. Multiscale Channel-wise Attention

In speech emotion recognition, local patterns within the
log mel spectrogram vary across frequency channels, with
certain channels carrying more discriminative features than
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Fig. 1. The overall architecture of the Lightweight Attention-Enhanced Network for Comprehensive Emotion Recognition with TCN (LANCET). ⊙ indicates
the dot product operation.

others. This variability is particularly important in noisy en-
vironments, where some channels may be affected by degra-
dation, while others retain salient features. To address this, a
multiscale channel-wise attention mechanism is introduced to
dynamically assign importance to each channel, emphasizing
those that contribute the most effectively to emotion recogni-
tion.

The log mel spectrogram X ∈ RF×T , where F is the
number of frequency channels and T is the sequence length,
is used as input. Inspired by [9], temporal features at different
scales are extracted for each frequency channel using parallel
1-D depthwise convolutions with kernel sizes ks, km, and kl
applied along the time axis. Specifically, ks captures fine-
grained temporal details, km focuses on mid-range patterns,
and kl extracts long-term temporal dependencies, providing
the context necessary to dynamically weight each frequency
channel in each frame based on its relevance. Following the
convolutional operations, average pooling is applied along the
time axis to reduce the dimensionality of the features, which
is followed by a ReLU activation function to introduce non-
linearity. This process produces pooled features for each kernel
size, Cs, Cm, and Cl, representing the temporal characteristics
of each frequency channel on different scales. These features
are then combined through a fully connected layer, resulting
in a unified representation C ∈ RF that encodes the multiscale
channel-wise features.

To further model dependencies between channels, two fully
connected layers are used. The first layer introduces a bot-
tleneck by reducing the dimensionality of C, and the second
restores the original dimensionality while applying a sigmoid
activation to compute the final attention weights W ∈ RF ,
which represent the relative importance of each frequency
channel. The computed attention weights W are broadcast
across all time frames to match the dimensions of the input
X , producing expanded attention weights W̃ ∈ RF×T . The
weighted log mel spectrogram X̂ ∈ RF×T is then obtained
via element-wise multiplication:

X̂ = W̃ ⊙X (1)

where ⊙ denotes element-wise multiplication.

B. Temporal Convolutional Network (TCN)
The TCN [10] is an architecture specifically designed to

model temporal sequences, enabling effective learning of tem-

poral dependencies [11]. It has been successfully applied in
various speech processing tasks, such as speech separation and
overlapping speech detection [12], [13]. A typical TCN block
comprises three key components: an input 1× 1 convolution,
a depthwise dilated convolution, and an output 1× 1 convolu-
tion. Between these layers, parametric ReLU activations and
normalization layers are applied to enhance learning stability,
while residual connections mitigate the vanishing gradient
problem, preserving critical temporal features.

Our proposed architecture, inspired by Conv-TasNet [14],
employs stacked TCN blocks to effectively capture both short-
term and long-term temporal dependencies in speech signals,
where short-term dependencies refer to how features change
over adjacent frames, and long-term dependencies model how
features evolve across distant frames over time. The weighted
log mel spectrogram X̂ ∈ RF×T is passed through N
stacked TCN blocks, repeated R times, where N and R are
hyperparameters. In each block, the dilation factor increases
exponentially as 20, 21, . . . , 2X−1, expanding the receptive
field and allowing the model to capture temporal patterns on
varying time scales. The output of the stacked TCN blocks is
a refined temporal feature representation X ′ ∈ RF ′×T , where
F ′ represents the enhanced feature dimension, and T remains
the sequence length.

C. Frame-wise Attention

After the TCN extracts the refined temporal feature map
X′, which captures both short-term and long-term temporal
dependencies across frames, not all frames in the sequence
are equally informative for emotion recognition. To address
this, we introduce a frame-wise attention mechanism that
dynamically assigns importance to each frame, allowing the
model to focus on the most relevant parts of the sequence.

Given the refined temporal feature map X′, we compute an
attention score for each frame using a learned vector w ∈ RF ′

,
which captures the contribution of each feature to the overall
importance of a frame.

For each frame t, we calculate the attention score et by
performing a dot product between the feature vector at frame
t and the learned attention vector w:

et = wTX′
t, t = 1, 2, . . . , T. (2)
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Attention scores et are then passed through a softmax
function to produce attention weights:

αt =
exp(et)∑T

t′=1 exp(et′)
, αt ∈ [0, 1], (3)

where αt represents the attention weight assigned to the t-th
frame, ensuring that the weights sum to 1 across all frames.
These weights effectively measure the relative importance of
each frame within the sequence.

Finally, we compute a weighted sum of frame features using
the attention weights αt, resulting in a condensed feature
representation X̃ ∈ RF ′

:

X̃ =

T∑
t=1

αt ·X′
t, (4)

where X̃ is a weighted combination of the frame features,
emphasizing the most informative frames for emotion recog-
nition. This condensed feature representation X̃ is then passed
through a linear layer to map it directly to the emotion classes.

III. EXPERIMENTS

In this section, we describe the experimental setup, compare
the performance of the proposed LANCET with state-of-the-
art methods, and conduct an ablation study to evaluate the
contribution of individual components of LANCET.

A. Dataset and Feature Extraction

The experiments are conducted on the IEMOCAP bench-
mark corpus [15], a widely used dataset for SER research
[6], [7], [16]–[21]. IEMOCAP contains 12 hours of emo-
tional speech from 10 actors, covering diverse speaking styles
and spontaneous interactions. This dataset setup follows the
standard evaluation methodology in speech emotion recog-
nition, as used in prior studies [6], [7], [19]–[21], which
have exclusively used IEMOCAP as a benchmark dataset,
ensuring fair comparisons with existing methods. We assess
performance across three subsets: (1) the improvisation subset,
which captures natural emotional variations in spontaneous
speech; (2) the scripted subset, which contains controlled
speech with explicit emotional portrayals; and (3) the full
subset, combining both for a comprehensive evaluation. For
feature extraction, we compute log mel spectrograms with 128
mel filter banks. We process audio signals with a 25 ms frame
size, a 10 ms frame shift, and a 16 kHz sampling rate. To
minimize spectral leakage, we apply a Hamming window.

1) Data Augmentation: To simulate real-world acoustic
conditions, the IEMOCAP dataset was augmented with noise
from the MUSAN dataset [22], including babble, music, and
ambient noise. Babble noise was created by mixing three to
eight speech files from the ”us-gov” section of MUSAN. Noise
was added to each audio sample at five SNR levels: 0, 5,
10, 15, and 20 dB. To evaluate the generalizability of the
proposed approach, separate subsets of noise files were used
for training/validation and testing, with no overlap between
the subsets to ensure that the test set remained independent

of the training and validation sets. For each IEMOCAP subset
(improvisation, scripted, and full), the augmentation process
produced 15 noisy datasets per subset, corresponding to 3
noise types combined with 5 SNR levels. This resulted in a
total of 45 augmented datasets in all subsets.

2) Baselines and Evaluation Metrics: To evaluate our pro-
posed model, we compare it with several state-of-the-art CNN-
based models, including APCNN [6], MHCNN [7], AACNN
[19], GLAM [20], E-GLAM [21], TC-Net [23], and HuBERT-
Base [3], a transformer-based approach.

For performance evaluation, we use Weighted Accuracy
(WA) and Unweighted Accuracy (UA), which are commonly
applied in SER research [20], [21]. Since WA and UA may
peak at different models, we report their average as a single
accuracy metric, following previous works [6], [19].

To assess the statistical significance of performance differ-
ences, we employ the Approximate Randomization test [24].

3) Implementation Details: In our experiments, we follow
the evaluation protocol in [25], using the neutral, sad, angry,
and merged happy-excited classes. The IEMOCAP dataset was
split via 10-fold speaker-independent cross-validation, with
one speaker for testing, eight for training, and one for valida-
tion. All models were retrained under this protocol to ensure
fair evaluation. To align with baselines, dataset clips were
segmented into 2-second windows with a 1-second overlap
for training and 1.6-second clips for validation/testing. Predic-
tions were averaged across segments. LANCET’s multiscale
channel-wise attention uses kernel sizes ks = 3, km = 5, and
kl = 10 for fine-grained, mid-range, and long-term temporal
features. TCN consists of 5 stacked layers with 3 repetitions.
We optimize with cross-entropy loss using Adam (10−6 weight
decay), an initial learning rate of 10−4 (decayed by 0.95 per
epoch), and train for 50 epochs with batch size 32. To enhance
generalization, we applied a mixed training method [26] with
a mixing rate of 0.5.

B. Results and Discussion

Experiments were conducted on the IEMOCAP dataset to
evaluate the performance of the proposed LANCET approach
under both clean and noisy recording conditions. Table I
provides a performance comparison of the proposed method
with state-of-the-art CNN-based approaches and HuBERT,
under clean conditions, while Figure 2 illustrates the results
under different types of noise applied at varying SNR levels.

1) Performance Comparison in Clean Recording Condi-
tions: Table I presents the performance of the proposed
LANCET approach compared to state-of-the-art CNN-based
models under clean recording conditions across the IEMOCAP
subsets: improvisation, script, and full. LANCET significantly
outperforms all baseline models across all subsets. In the
improvisation subset, LANCET achieves a WA of 74.35%,
outperforming the second-best model, HuBERT, by 2.16%.
In the script subset, LANCET reaches a WA of 63.12%,
exceeding HuBERT by 1.68%. In the full subset, which com-
bines the script and improvisation subsets, LANCET attains a
WA of 68.04%, surpassing HuBERT by 0.5%. These results
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TABLE I
PERFORMANCE COMPARISON OF LANCET WITH OTHER APPROACHES
ACROSS ALL IEMOCAP SUBSETS UNDER CLEAN CONDITIONS. BOLD

VALUES REPRESENT THE BEST PERFORMANCE, AND UNDERLINED VALUES
INDICATE THE SECOND-BEST PERFORMANCE.

Method Improvisation Script Full
WA (↑) UA (↑) WA (↑) UA (↑) WA (↑) UA (↑)

APCNN [6] 66.80±1.92 64.12±1.27 46.75±2.81 47.04±2.24 60.36±1.30 62.25±1.15
MHCNN [7] 68.23±2.04 66.45±2.49 54.57±2.40 52.66±2.05 64.56±2.77 66.23±2.49
AACNN [19] 69.65±1.20 67.63±0.89 57.96±1.25 56.13±1.31 66.59±0.97 67.26±0.75
GLAM [20] 70.51±2.45 68.28±2.39 60.17±2.14 58.13±2.97 66.52±0.77 67.17±1.21
E-GLAM [21] 71.36±1.79 69.30±1.17 60.76±1.98 59.13±2.07 65.57±1.29 66.52±1.30
TC-Net [23] 71.79±1.84 70.50±1.68 59.73±2.19 58.27±2.22 66.95±1.73 67.05±1.65
HuBERT [3] 72.19±0.84 71.05±1.28 61.44±1.17 60.01±1.21 67.54±1.74 68.11±0.77
LANCET 74.35±1.17 71.66±0.99 63.12±1.36 61.44±1.26 68.04±1.06 69.16±1.15

demonstrate the superior performance of LANCET in speech
emotion recognition in all subsets of the IEMOCAP dataset
under clean conditions.

Fig. 2. Performance comparison of LANCET with other approaches across all
IEMOCAP subsets under noisy conditions. Impro denotes the improvisation
subset.

2) Performance Comparison in Noisy Recording Condi-
tions: Figure 2 illustrates the performance of LANCET com-
pared to state-of-the-art CNN-based approaches and HuBERT,
a transformer-based model, under various noise conditions,
including babble, music, and ambient noise, applied at five
SNR levels: 0, 5, 10, 15, and 20 dB. Across all noise types
and SNR levels, LANCET significantly outperforms com-
peting methods, demonstrating its robustness in challenging
acoustic environments. At lower SNR levels (0, 5, and 10
dB), LANCET shows a significant performance advantage.
This is attributed to multiscale channel-wise attention, which
prioritizes spectral features based on their noise resilience, and
frame-wise attention, which emphasizes frames most relevant

for emotion recognition. In contrast, other methods treat spec-
tral and temporal features uniformly, limiting their effective-
ness in noisy conditions. As SNR increases, the performance
gap narrows, particularly beyond 10 dB, reflecting the reduced
impact of noise as the recordings become cleaner. The type
of noise affects LANCET’s performance differently across the
IEMOCAP subsets. Music noise has the greatest impact on
improvisation speech due to its harmonic and melodic com-
ponents overlapping with the tonal variations of spontaneous
speech, making it harder to extract emotion-relevant features.
Ambient noise poses the greatest challenge for the script and
full subsets because its dynamic and unpredictable nature
disrupts consistent emotional cues in scripted and combined
speech data.

TABLE II
ABLATION STUDY OF LANCET UNDER CLEAN CONDITIONS ACROSS

DIFFERENT IEMOCAP SUBSETS. FWA INDICATES FRAME-WISE
ATTENTION, AND MCWA INDICATES MULTISCALE CHANNEL-WISE

ATTENTION.

Method TCN FWA MCWA Accuracy (%) (↑)
Improvisation subset

TCN ✓ ✗ ✗ 70.37
TCN + FWA ✓ ✓ ✗ 70.94
TCN + MCWA ✓ ✗ ✓ 71.04
LANCET ✓ ✓ ✓ 73.00

Script subset
TCN ✓ ✗ ✗ 59.14
TCN + FWA ✓ ✓ ✗ 60.92
TCN + MCWA ✓ ✗ ✓ 61.07
LANCET ✓ ✓ ✓ 62.28

Full subset
TCN ✓ ✗ ✗ 66.73
TCN + FWA ✓ ✓ ✗ 67.39
TCN + MCWA ✓ ✗ ✓ 68.04
LANCET ✓ ✓ ✓ 68.60

Fig. 3. Ablation study of LANCET under noisy conditions on the IEMOCAP
full subset.

C. Ablation Study

We conducted ablation experiments to assess the impact
of TCN, multiscale channel-wise attention, and frame-wise
attention in LANCET. Table II shows results under clean
conditions, while Fig. 3 presents noisy condition results for the
full subset, with similar trends observed in the improvisation
and script subsets.

We use TCN as the base model, evaluating the individ-
ual contributions of frame-wise and multiscale channel-wise
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attention. Among the two attention mechanisms, multiscale
channel-wise attention has a greater impact, as it prioritizes
informative frequency channels, mitigates microphone self-
noise in clean conditions, and reduces environmental noise
interference in noisy settings. Frame-wise attention refines the
temporal representations learned by TCN, complementing its
ability to model multi-scale dependencies across frames.

Fig. 4. Comparison of LANCET with State-of-the-Art Models, including
WavLM and HuBERT, based on Parameter Count (Log Scale) and Average
Inference Time (ms).

We further evaluate LANCET’s computational efficiency
by comparing its parameter count and inference time on 4-
second speech signals (Fig. 4). Transformer-based models,
such as HuBERT-base (94.68M parameters) [3] and WavLM-
base (94.38M parameters) [4], have significantly higher com-
putational costs, with inference times of 1054 ms and 2314 ms,
respectively. Although HuBERT and WavLM have comparable
parameter sizes, WavLM exhibits higher inference latency due
to its more complex architecture.

In contrast, LANCET requires only 266.1K parameters and
achieves a 2 ms inference time, making it the most efficient
model among CNN- and transformer-based approaches. This
highlights its suitability for real-time and resource-constrained
applications.

IV. CONCLUSION

In this paper, we proposed a novel lightweight approach
for emotion recognition under diverse recording conditions,
LANCET, which integrates a TCN to effectively model short-
and long-term dependencies in speech signals, a multiscale
channel-wise attention mechanism to emphasize discrimina-
tive and noise-resilient frequency channels, and a frame-wise
attention mechanism to focus on the most relevant frames.
Comprehensive experiments on the IEMOCAP dataset, in-
cluding its original and augmented versions, demonstrate that
LANCET achieves state-of-the-art performance, significantly
outperforming existing methods in both clean and challenging
conditions.
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