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Abstract—Recent advances in feedforward active noise control
(ANC) often require a reference microphone (RM) near each
potential noise source to capture ‘‘clean” noise. However, in
practice, the position of some noise sources is unavailable and
may change with time, resulting in poor ANC performance.
To overcome this shortcoming, a novel ANC system based on
microphone networks is designed which allows for higher spatial
resolution and thus captures high-quality recordings. Instead
of using the entire microphone network, we select the most
contributive subnetwork to act as the RMs in the ANC system
to reduce the computational load of ANC tasks. Here, the best
subnetwork is determined by minimizing the output noise power
via Boolean programming. Experimental results show that the
performance of the proposed method is close to the optimal
performance using exhaustive searching.

Index Terms—active noise control, feedforward control, convex
optimization, microphone networks.

I. INTRODUCTION

Active noise control (ANC) has attracted extensive attention
in various applications, including headphones [1], headrests
[2], vehicles [3], to name a few. In the traditional single-
channel feedforward ANC system [4], a reference microphone
(RM) is adopted to capture noise information. Then, the ANC
controller emits “antinoise” by a secondary source to cancel
the noise at the control point. Usually, it requires a fixed RM
near the noise source to capture “clean noise” [5]. However,
in practice, some noise sources are inaccessible and their
positions may change over time, leading to low-quality noise
recordings as well as poor ANC performance.

To obtain high-quality recordings, the multichannel feed-
forward ANC system was proposed, which employs multiple
RMs to sample the sound field [6]. Specifically, Shi et al.
proposed a 4-channel ANC system and validated its advantage
on ANC windows [7]. Subsequently, Shen et al. demonstrated
that the use of multiple RMs tends to increase the reference-
to-interference ratio, which in turn improves the ANC perfor-
mance [8]. Theoretically, the more RMs, the better the ANC
performance. However, using all RMs may lead to an excessive
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computational burden, which affects the real-time processing
requirement. To this end, it is vital to select an informative
subset of RMs.

Recently, some RMs selection methods were developed to
determine the most informative RM subset for ANC systems
[9]-[11]. Iwai et al. selected those RMs that satisfy the
causality relative to the error microphone, and the causality is
determined by the time difference of arrival (TDOA) estimate
between the RM and the error microphone [9]. Instead, Zhang
et al. analyzed the coherence between the received signals
of the RM and the error microphone, then concluded that
the RM with a higher coherence coefficient makes a greater
contribution to the multichannel feedforward ANC system
[10]. Based on this basis, Shen et al. proposed a coherence-
based RMs selection algorithm, which puts RMs with lower
coherence coefficients to sleep [11]. However, since the above
criteria do not directly reflect noise reduction performance, it is
questionable whether using them is beneficial in multichannel
feedforward ANC systems.

In this paper, instead of arranging RMs in advance, we use
the microphone network to capture noise information. Due to
the ad hoc nature, the microphone network has a higher spatial
resolution [12], thus providing high-quality “clean noise”.
In order to reduce computational complexity, selecting the
best subnetwork from the microphone network (to act as the
RMs ) is important, especially for a large-scale microphone
network. To this end, we develop a novel RMs selection
algorithm, in which the best subset of RMs is determined by
minimizing the output noise power at the control point via
Boolean programming. In doing so, the proposed method can
obtain near-optimal RMs, which outperform the existing RMs
selection strategies.

II. FUNDAMENTALS
A. Multichannel Feedforward ANC System

Let us consider a typical multichannel feedforward ANC
system (Fig. 1), where the ANC controller receives the acous-
tic noises captured by I RMs and then emits the “antinoise”
by a secondary source to cancel the noise at the control point
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Fig. 1. Block diagram of the multichannel feedforward ANC system.

(error microphone position). The control signal y(n) generated
at time n can be represented by

I
y(n) =Y a] (nw;, (1)
i=1

where superscript (-)* indicates the transpose, x;(n) =
[z;(n),z;(n — 1), ...,2;(n — M + 1)]T with z;(n) denoting
the received signal of the ith RM at time n, and w; is the
M -order control filter corresponding to RM 1.

The error microphone is placed at the desired control point
to monitor the residual noise signal e(n), which can be
expressed as

e(n) = d(n) — y(n) = s(n), )
where ‘%’ denotes linear convolution, d(n) represents un-
wanted noise through the primary path p ( with p being the
path between the noise source and the error microphone), and
s(n) is the impulse response of the secondary path s between
the secondary source and the error microphone. During the
system working, d(n) can be estimated by

d(n) = e(n) +y(n) * &(n), 3)
where d(n) is the estimate of d(n), and 3(n) is the estimate
of s(n), which can be obtained through offline modeling [13].

The objective of the multichannel feedforward ANC system
is to minimize e(n) through optimizing the filter coefficient

w=|w], w3, -, wi|,ie,
min  E{e*(n)}, 4)

where E {-} denotes the mathematical expectation. For real-
time processing, the multiple reference filtered-x normalized
least mean square (MRFxNLMS) algorithm [14] replaces
E {e(n)?} in (4) with its instantaneous form e?(n), obtaining
the following recursive solution

w;(n+1) =w;(n) + o x;

I 27
B+ 2imlzi ()l

where w;(n) is the update of w; at time n, p is the step-size
parameter, || - || represents the 5 norm, 3 is the regularization
parameter. z(n) = [x}(n), zi(n—1), ..., 2. (n— M +1)]T with
Such a multichannel feedforward ANC system assumes that
the RMs are placed near the potential noise sources before
the ANC procedure [5]. However, the position of all the
noise sources is not available in advance. Some noises are
unpredictable, and their positions may change over time. Once

(n)e(n), (5)

it appears, the arranged RMs are difficult to capture “clean”
noises, resulting in poor noise reduction performance.

B. ANC Exploiting Microphone Networks

Thanks to the scalability and versatility, microphone net-
works [12] offer a higher spatial resolution than the traditional
single microphone (or the microphone array), as the number
and position of the microphones are no longer fixed. In such
a configuration, there is a higher probability that at least
one microphone node is near each potential noise source,
capturing high-quality recordings for multichannel feedfor-
ward ANC systems. Still, using the entire network to perform
MRFxNLMS filtering may introduce a large computational
load, affecting real-time processing. To this end, it is essential
to select an informative subnetwork.

C. RMs Selection

RMs selection is often performed from a small number of
noisy observations by activating all RMs (Fig. 2). During this
period, all observations can be fed to the ANC controller
to execute noise cancellation. Once the RMs selection is
complete, only the selected RMs are reserved while other RMs
are put to sleep. If a change in the sound field is detected,
all RMs are reactivated to repeat the above RMs-selecting
operation.

RM Selected RMs
selection ANC
all RMs controller
" A

Fig. 2. Signal processing flow, where the internal structure of the ANC
controller is shown in Fig. 1.

In [15], Hase et al. proposed an RMs selection approach
based on the causality constraint. Specifically, the ith RM
satisfies the causality constraint if and only if

A

TDOA(.’E“ d) > DC + Dsa (6)

where d = [d(1),d(2),...,d(N)]T is the desired signal of
length N, z; = [2;(1),2:(2),...,2;(N)]T is the received
signal of RM 4, and TDOA(x;,d) is the TDOA from the
noise source to the error microphone and RM ¢, D¢ is the
computational delay of the ANC controller, and D; is the
delay of the secondary path. Based on the above, the RMs
that satisfy the constraint (6) are selected to perform the
MRFxNLMS filter.

By doing so, the computational complexity of the multi-
channel feedforward ANC system can be reduced if some
RMs do not meet (6). However, when many RMs satisfy
the causality constraint, the computational load is still heavy.
In other words, we can not specify the number of activated
RMs by (6). Furthermore, it is questionable whether the
causality constraint is actually optimal for noise reduction.
These two issues are addressed in the next section through
the development of a novel RMs selection method.
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III. REFERENCE MICROPHONES SELECTION FOR
FEEDFORWARD ANC IN MICROPHONE NETWORKS

In order to obtain the best subset of RMs (or nodes) from
a given microphone network, we minimize the residual noise
power after constraining the number of activated nodes. Such
a criterion is more intuitive than the causality constraint rule
in (6), as the residual noise power directly reflects the ANC
performance.

Exactly as in the study [15], here we conduct the RMs
selection from the received signals of length V. In this case,
problem (4) is equivalent to

min  (d— Xw)" (d - Xw),
w (N
eT e
where e = [e(1),e(2),...,e(N)|T, X = [Xl Xq - XI]
with X; = [a(1) z}(2) - a:;(N)]T Then, the closed-form
solution of (7) is given by

w=(XTX)"'x"Td. (8)

A. RMs Selection Model

A Boolean selection vector is first introduced as
vr]T € {0,1}7, )
where v; = 1 indicates that node 7 is selected and vice versa.
In addition, we use I, to specify the number of selected RMs.

Using a sensor selection matrix ®,,, the selected microphone
recordings X ,, can be expressed by a submatrix of X, i.e.,
X,=X®,, (10)
where ®, € {0,1}(FoM)xUM) §5 3 submatrix of V =
diag(v) ® I after all-zero rows (corresponding to the unse-
lected sensors) have been removed, diag(v) denotes a diagonal
matrix with v on its diagonal, and symbol ‘®’ denotes the
Kronecker product while I,; represents an M-order identity
matrix. It is evident that @, has the following characteristics

@, =I,m, ®,@,=V, (11)
where Iy »s is an ([, M)-order identity matrix. After substi-

tuting X in (8) with X, the optimal filter coefficient for a
subset of I, nodes determined by v will be

W, = (XTX,)'XTd.

v = [v1,09,...,

12)

B. Loss Function Construction

Combining (12) and (7), the residual noise signal e, using
the selected nodes can be expressed as

e, =d— X, (XTXx,)"'XTd. (13)

Then, v is determined by minimizing the output noise
power, yielding
min ele,
v (14)
st. 1Tv=1,, v e {01}/,
where 1 represents the vector with all elements being 1. The
problem (14) is non-convex due to the selection matrix ®,, and
the Boolean variable v. To this end, we relax this problem to
a convex one in the next subsection.

C. Convex Relaxation

The output noise power in problem (14) can be derived as
eTe,=d (1, - XoT (@, X" x87)'®,X")d,
—d'd-d xe"@,x"xe") &, xTd. (19
Q.

In order to avoid the non-linearity within ®,X Tx &, the
matrix XX is decomposed as
XTX =\ + G, (16)

where A is a positive constant and G is a positive semi-definite
matrix. From (16), @, can be represented as <I’1T,()\IIU M+
®,G®")"'®,. According to (11) and the matrix inversion
lemma [16], Q,, can be further rewritten as

Q,=G'-G G '+x'V)'¢Th. an

Obviously, minimizing the output noise power in (15) is equiv-
T ~

alent to maximizing its second term d X Q, X Td. Therefore,

problem (14) can be alternatively formulated as

max 7
v,

st. n< JTXQUXTci
1Tv =1, v € {0,1}/,

(18)

AT N
where 7 is the lower bound of the term d XQ,X "d. In
addition, the first constraint in (18) can be reformulated via
the linear matrix inequality [17] as

G lc
c'Gle—n

G l+axv

CTG—l (19)

= Ory+1,

where ¢ = XTd. Afterward, we relax v; € {0,1}/ to 0 <
v; < 1, and transform (18) into a convex programming

max 7
v,
st (19) (20)

1To=1,, 0<v <1,

which can be solved by existing solvers such as CVX [18]
or SeDuMi [19]. Note that the nodes with the indices of the
largest I, elements in v are activated to perform MRFxNLMS
filtering. By doing so, the computational complexity can be
reduced significantly while maintaining good noise reduction
performance.

Remark I Mathematically, the convex relaxation in RMs
selection, i.e., (15)-(20), shares similarities with the derivation
in other sensor selection methods [20]-[22]. We would like
to note that the difference between the proposed method and
these methods includes the application scenario, the loss func-
tion, and the symbol definition. For example, [20] concerns
a sensor selection problem in speech enhancement and the
corresponding loss function is constructed by maximizing the
output SNR.

378



IV. SIMULATION RESULT

In the following simulations, we assumed a noise environ-
ment similar to that inside a factory, as described in [9], where
the control point remains stationary and the locations of the
noise sources do not change frequently.

The simulation environment was an enclosure of size 3 m x
3 m, where I = 20 spatially distributed microphones were
arranged to form a microphone network (Fig. 3). The three
noise sources emitted the noise signal in turn. The sampling
rate was 16kHz, the signal length for RMs selection was fixed
to N = 160000 samples, and p and 8 were set to 0.001
and 1.0x107°, respectively. In subsequent experiments, the
normalized mean squared error (NMSE) in dB is used to
evaluate noise reduction performance, which is given by

L
Zn:l 62 (TL)
L ~ )
=1 @ (n)
where L represents the signal length for performing MR-
FxNLMS filtering. In subsequent experiments, L = 160000

samples. In general, the lower the value of the NMSE, the
better the noise reduction performance.

NMSE = 101log;, @1)
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Fig. 3. Geometry configuration, including 1 loudspeaker, 1 error microphone,
and 20 nodes in an enclosure.

A. Performance under different Filter Orders

In this experiment, we set [,, = 1, and the ANC performance
was evaluated under different filter orders when activating only
the 3rd noise source in Fig. 3.

From Table I, it can be seen that the optimal RM varies with
increasing filter order, which provides the lowest NMSEs. This
is because the increase of filter orders changes D, in (6) and
thus affects the optimal RM. Similarly, the RMs selected by
the proposed method is also dependent on the filter order and
is consistent with the optimal RM in most cases. (Although it
does not find the optimal RM when M = 30, the NMSE of
the proposed method is close to that of the optimal RM.) Note
that the optimal solution can only be obtained from an NP-hard
problem by exhaustive searching. The proposed method can
get rid of the NP-hard problem, which runs more efficiently. In
addition, state-of-the-art methods, including coherence-based
selection (CBS) [11] and causality-constraint-based selection
(CCS) [15], are independent of filter orders. The proposed

TABLE I

NMSE AND SUBSET UNDER DIFFERENT FILTER ORDERS WHEN [, = 1.
Filter order 15 20 25 30 35
Proposed {5} {6} {6} {3} {3}

Subset Optimal {5} {6} {6} {6} {3}

CBS [11] {9} {9} {9} {9} {9}
Proposed -19.16  -1943  -19.51 -19.42  -19.59
Optimal -19.16  -1943  -19.51 -19.50 -19.59

NMSE(dB)
CBS [11] -6.94 -7.35 -7.44 -8.32 -9.15
CCS [15] -13.55  -15.10  -17.93  -19.40 -19.43

*Note: For the CCS method, we can not specify the number of RMs,

and it always selects the subset {1,3,4,5,6} for all filter orders. Here, its

NMSE was computed by averaging the NSMEs of all selected RMs.
method outperforms the above two methods, especially when
the filter order is small.

B. Performance under Different Number of Activated RMs

In this experiment, the previous experimental settings were
kept, but the filter order M was fixed at 20.

As shown in Fig. 4, the processing time per sample (PTPS)
of the MRFxXFLMS algorithm increases linearly as [, in-
creases. In addition, the proposed method provides the smallest
NMSEs when selecting different numbers of RMs, especially
when I, < 3. If I, is large, the NMSEs of all methods are
comparable. That is, when selecting a small number of RMs
to meet real-time requirements, the advantage of the proposed
method is remarkable regarding noise reduction.

Although the running time for RMs selection (RTRMS) of
the CCS method is the shortest, it is unable to specify the
number of selected RMs, which is explicitly highlighted in
Table I. Instead, it selects all nodes that satisfy (6). In contrast,
the proposed method has an RTRMS that lies between the
RTRMS of CCS and CBS algorithms, and it allows one to
specify the number of selected RMs. As shown in Fig. 4, the
proposed method achieves the lowest NMSE, which almost
does not change when I, increases from 1 to 5. The reason is
that there is a large redundancy among the RMs. Our algorithm
effectively finds and reduces this redundancy (by selecting
I, = 1 in this case), resulting in high computational efficiency.

-5 34
F o |8 Proposed[6.36s]--A-- CCS[0.18s] . ’
. |-®--CBS[6.57s] --#-PTPS
10 F i 127
=~ *
@ . - —
=2 2
Lg 15+ ‘® . . \t\/‘ 420 é
Z u .5‘/\: """"""""""" ry PSR Y A
20 F o 113
o5 Le” I I . g
1 2 3 4 5

Fig. 4. NMSE, PTPS, and RTRMS under different I,,, where the value within
[-] indicates the RTRMS.

C. Performance under Varying Noise environments

The ANC performance was tested in varying noise environ-
ments, with the three noise sources in Fig. 3 being activated
sequentially. To reduce computational cost, we set [, = 1 and
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M = 20. Once the noise environment varies, the proposed
method executes a reselection of RMs. In practice, the changes
in the noise environment can be detected by monitoring the
deterioration in noise reduction performance [9] (i.e., residual
noise exceeding a specified threshold). During the RM reselec-
tion procedure, all RMs were activated to perform ANC until
the new RM was available in the current noise environment.
The averaged noise reduction (ANR), measured in dB, was
used to evaluate the ANC performance under varying noise
environments, which is calculated as

Ae,n
dn
where Acp, = AMen—1+ (1= A)le(n)], 45, = A, +
(1- )\)id(n)‘ with initial conditions Aco = A, = 0, and
A =0.999 is the forgetting factor.

As shown in Fig. 5, the selected RM varies with changing
noise environments. In addition, when the noise environment
changes, the ANR value slightly degrades during the first 16 s
(including sampling time = 10 s and RTRMS = 6 s) where all
RMs are activated. After the new RM is obtained and activated,
the noise reduction effect is comparable to that of activating all
RMs, demonstrating redundancy among RMs and highlighting
the importance of RMs selection. The steady ANR is about
-20 dB. This experiment further verifies the effectiveness of

the proposed method in dynamic environments.
—ANC off —ANC on

) (22)

b
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Fig. 5. Noise reduction performance under changing noise environments.

V. CONCLUSION

This paper proposes an RMs selection method for mul-
tichannel feedforward ANC systems using microphone net-
works. We formulated the RMs selection problem by mini-
mizing the output noise power using Boolean programming
and solved it through convex optimization techniques. Nu-
merical experiments confirmed that the proposed algorithm
consistently selects the most contributing subset compared to
the existing CBS and CCS methods. In our future work, we
will investigate the RMs selection problem in multichannel
feedforward ANC systems with multiple control points and
multiple secondary sources.
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