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Abstract—Active Noise Control (ANC) under impulsive noise
conditions remains a significant challenge. The Filtered-x logLMS
(FxlogLMS) algorithm suppresses large noise spikes through
logarithmic transformation, but suffers from slow convergence
and limited robustness in highly impulsive environments.

This paper proposes GSN-FxlogLMS+, a novel algorithm that
integrates a variable step-size scheme with a modified robust
error function. The proposed method dynamically adapts to noise
conditions without requiring manually set thresholds, achieving
a better balance between robustness and convergence speed.

Simulation results demonstrate that GSN-FxlogLMS+ im-
proves noise suppression performance by up to 2.8 dB, compared
to conventional methods, particularly under highly impulsive
noise conditions.

I. INTRODUCTION

Active Noise Control (ANC) is widely applied in industrial
noise reduction, personal hearing protection, and automotive
systems. The Filtered-x Least Mean Square (FxLMS) algo-
rithm is a standard approach due to its computational efficiency
and adaptability to Gaussian noise. However, its performance
significantly degrades under impulsive noise, which exhibits
heavy-tailed, non-Gaussian characteristics.

To address this, various modifications have been explored.
Thresholding-based methods [1], [2] and normalized step-
size techniques [3], [4] suppress extreme noise amplitudes,
improving stability at the cost of slower convergence. Robust
Error Function (REF)-based approaches enhance robustness
by applying nonlinear mappings to compress large error
amplitudes [5]–[7]. While these methods mitigate moderate
impulsive noise, their suppression saturates at extreme outliers,
limiting adaptability. The FxgsnLMS algorithm [8] models
impulsive noise using a generalized Gaussian distribution with
adaptive step-size normalization, improving stability under α-
stable noise conditions.

Despite these advancements, existing methods struggle to
balance robustness, convergence speed, and computational
efficiency. To overcome this, we propose GSN-FxlogLMS+,
which integrates an adaptive robust error function based
on FxlogLMS [9] with step-size normalization. The pro-
posed method mitigates impulsive noise while maintaining
fast adaptation, without requiring predefined thresholds or
additional constraints. Experimental results confirm that GSN-
FxlogLMS+ outperforms conventional methods in both robust-

Fig. 1: Block diagram of a feedforward ANC system based
on the FxLMS algorithm.

ness and convergence speed, particularly in highly impulsive
environments.

II. CONVENTIONAL FEEDFORWARD ACTIVE NOISE
CONTROL

A. Feedforward Active Noise Control System

Figure 1 illustrates the structure of a feedforward ANC
system. In this system, the reference microphone and error
microphone capture the reference signal x(n) and the error
signal e(n), respectively. The secondary loudspeaker generates
the control signal y(n) to attenuate the primary noise d(n).
The transfer functions P (z) and S(z) represent the primary
and secondary paths, respectively. The secondary path model
Ŝ(z) is pre-estimated, and W (z) denotes the noise control
filter.

The filtered reference signal r(n), which passes through the
secondary path model, is given by

r(n) =

L−1∑
j=0

ŝ(j)x(n− j), (1)

where ŝ(n) is the impulse response of the secondary path with
a length of L.

The k-th coefficient of the noise control filter in the FxLMS
algorithm, wk(n), is updated as

wk(n+ 1) = wk(n)− µe(n)r(n), (2)
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Fig. 2: Probability density functions of the SαS distribution
for different values of α: α = 0.5, 1, 1.5, 2.

where µ is the step-size parameter.

B. α-Stable Noise

Impulsive noise is commonly generated by press machines,
electric hammers, and various industrial machinery. The health
effects of such noise are significant. The aim of this paper is to
develop an effective coefficient update algorithm for mitigating
impulsive noise.

Impulsive noise is often modeled using a symmetric α-
stable (SαS) distribution, defined as

ψ(t) = e−γ|t|α , (3)

where 0 < α < 2 is the characteristic exponent controlling
the kurtosis of the Probability Density Function (PDF), and
γ > 0 is the scale factor. In this paper, γ is set to 1.

As α approaches 0, the distribution exhibits strong impul-
siveness, whereas for α → 2, it converges to a Gaussian
distribution. Some examples of SαS distributions are shown
in Fig. 2.

III. MODIFIED FXLOGLMS ALGORITHM FOR ACTIVE
IMPULSIVE NOISE CONTROL

Various methods have been proposed to address the limita-
tions of the FxLMS algorithm. This section reviews conven-
tional ANC approaches designed for impulsive noise.

A. Clipping

Clipping-based algorithms limit the reference and error sig-
nals within predefined thresholds. The Th-FxLMS algorithm
[1] updates the filter coefficients as

wk(n+ 1) = wk(n)− µ C(e(n))
L−1∑
j=0

ŝ(j) C(x(n)). (4)

Here, the clipping function is defined as

C(x) = max(c2,min(c1, x)), (5)

where c1, c2 > 0 are the upper and lower thresholds.
By applying C(·), extreme values in x(n) and e(n) are

suppressed, preventing instability in the filter update. How-
ever, fixed thresholds require dynamic adjustment for optimal
performance.

B. Variable Step-Size

A large step-size accelerates convergence but increases
steady-state misadjustment. The Variable Step-Size (VSS)
approach addresses this trade-off by dynamically adjusting the
step-size.

One widely used VSS method is the Normalized FxLMS
(FxNLMS) algorithm [3], which adjusts the step-size µ in Eq.
(2) based on the squared norm of the filtered reference signal:

µ̂(n) =
µ

∥r(n)∥22 + δ
, (6)

where δ is a small positive constant to prevent instability due
to division by zero.

To further enhance stability, the FxLMS algorithm with
Normalized Step-Size (NSS) [3] incorporates the estimated
mean power of the error signal Ee(n):

µ̂(n) =
µ

∥r(n)∥22 + Ee(n) + δ
, (7)

where Ee(n) is estimated using an exponential moving aver-
age:

Ee(n) = λEe(n− 1) + (1− λ)e2(n), (8)

with forgetting factor λ (0 < λ < 1).
The General Step-size Normalized FxLMS (FxgsnLMS)

algorithm [8] introduces a Gaussian-based normalization to
balance stability and convergence speed. The step-size is
dynamically adapted as

µ̂(n) =
µ√
2πσ

exp

(
−x

2(n)

2σ2

)
, (9)

where σ is the standard deviation. As shown in Eq. (9),
the step-size decreases exponentially with x2(n), limiting
adaptation under extreme noise conditions.

However, VSS methods rely on statistical properties of
the input signal power, making them less effective against
sudden, high-amplitude impulsive noise. Since impulsive noise
deviates significantly from typical signal statistics, these meth-
ods fail to adjust the step-size appropriately, resulting in
insufficient robustness in highly non-Gaussian environments.

C. Robust Error Function

The Robust Error Function (REF) introduces a non-linear
mapping to suppress large error amplitudes, enhancing robust-
ness against impulsive noise.

One approach minimizes a squared logarithmic cost func-
tion, leading to the update equation:

wk(n+ 1) = wk(n)− µ sgn(e(n))
log |ê(n)|
|ê(n)|

r(n), (10)

where ê(n) = max(1, |e(n)|). This approach prevents exces-
sive adaptation but stops updating when |e(n)| < 1, which
may slow convergence under mild noise conditions.

Another approach employs a hyperbolic cosine cost func-
tion, as in the FxLCH algorithm [7], which is given by:

wk(n+ 1) = wk(n)− µ̂(n) tanh(ρe(n))r(n), (11)
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where µ̂(n) follows Eq. (6). This method smooths the sup-
pression of large errors using the tanh function, but its output
saturates for extreme values, limiting adaptation to sudden
noise variations.

While REF-based methods improve robustness against im-
pulsive noise, they inherently reduce sensitivity to all errors,
slowing convergence and degrading tracking performance in
dynamic noise environments.

IV. PROPOSED METHOD

As discussed in Sec. 3, both Variable Step-Size (VSS) and
Robust Error Function (REF) methods exhibit a significant
trade-off between robustness against impulsive noise and con-
vergence speed.

To overcome this trade-off, we develop a new REF-based
algorithm, FxlogLMS+, which improves convergence speed
while maintaining the robustness of FxlogLMS. Furthermore,
to further enhance convergence, we introduce an optimal VSS
approach for FxlogLMS+, utilizing the step-size normalization
technique of the FxgsnLMS algorithm. By integrating these
techniques, we propose the General Step-size Normalized
FxlogLMS+ (GSN-FxlogLMS+) algorithm, which effectively
balances noise robustness and fast adaptation.

The update equation of the GSN-FxlogLMS+ is given by

wk(n+ 1) = wk(n)− µ̂(n)
ψ(e(n))r(n)√

E[x(n)2]
(12)

ψ(e(n)) = sgn(e(n))
log(G|e(n)|+ 1)

G|e(n)|+ 1
, (13)

where G is the gain factor, which enhances convergence speed
at the cost of increased misadjustment after convergence, and
µ̂(n) follows Eq. (9). The Root Mean Square (RMS) value of
the reference signal x(n) is introduced for normalization to
enhance the algorithm’s robustness against impulsive noise by
scaling down the update magnitude during the occurrence of
high-amplitude impulses.

Unlike FxlogLMS and Th-FxLMS, the proposed algorithm
mitigates sensitivity to impulsive noise without requiring pre-
defined thresholds or explicit constraints on e(n). By smoothly
shaping the robust error function, the method adapts dynam-
ically to various noise conditions, offering improved stability
and flexibility.

Let J(n) denote the cost function and ϕ(e) = ∂J(e)/∂e
represent the score function, which corresponds to the robust
error function. Figure 3 illustrates the relationship between
the error signal and the robust error functions ϕ(e) for both
the proposed and conventional methods. The proposed method
effectively suppresses large errors, reducing excessive adapta-
tion under impulsive noise, while retaining the behavior of
standard FxLMS for small errors. The gain factor G allows
tuning of this balance.

A. Selection of the Variable Step-size method

To validate the effectiveness of GSN as a variable step-size
method for FxlogLMS+, we compare its performance with

Fig. 3: Comparison of score functions of the proposed and
conventional methods.

Fig. 4: Comparison of step-size normalization methods in
FxlogLMS+.

two conventional methods: NLMS-type and NSS-type method.
Each method is integrated into FxlogLMS+. .

Figure 4 shows the time behavior of the averaged noise
reduction (ANR) under impulsive noise conditions using α-
stable noise with α = 1.85 (as shown in Fig. 6). ANR is
defined as

ANR(n) = 20 log
Ae(n)

Ad(n)
, (14)

where

Ae(n) = χAe(n− 1) + (1− χ)|e(n)|, (15)
Ad(n) = χAd(n− 1) + (1− χ)|d(n)|, (16)

with χ = 0.999.
The NLMS-type (black line) and NSS-type (red line) nor-

malizations exhibit similar performance, with their ANRs
almost identical and overlapping, providing fast initial con-
vergence but lacking robustness against impulsive noise. In
contrast, the GSN-based approach (blue line) achieves both
high robustness and fast adaptation, making it the most effec-
tive step-size method for FxlogLMS+.

Based on this result, we employ the GSN-based VSS in the
proposed GSN-FxlogLMS+ algorithm.

B. Optimization of the Gain Factor G

The gain factor G controls the trade-off between conver-
gence speed and robustness against impulsive noise. Smaller
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Fig. 5: Effect of G on the score function.

Fig. 6: ANR behavior for different G values.

values improve robustness but slow adaptation, while larger
values accelerate convergence at the cost of stability.

To determine the optimal G, we first analyzed its effect on
the score function, which represents the derivative of the cost
function and governs the update magnitude of the adaptive
filter. Figure 5 illustrates how different G values affect the
score function. As G increases, adaptation to small errors
accelerates, improving convergence speed and robustness.
However, excessive convergence speed may lead to increased
misadjustment.

To further evaluate the impact of G, we examined the ANR
behavior under α-stable noise (α = 1.85), as shown in Figure
6.

The results indicate that G = 7.5 achieves a favorable
balance between convergence speed and robustness. Thus, we
adopt G = 7.5 in the subsequent experiments.

Fig. 7: Experiment Environment.

V. EXPERIMENT

To evaluate the effectiveness of the proposed method, we
conducted simulation experiments using α-stable noise. The
primary noise duration was set to 30 seconds at a 16 kHz
sampling rate. The primary and secondary path lengths were
512 and 128 samples, respectively, with corresponding phys-
ical lengths of 20 cm and 5 cm. The secondary path was
assumed to be perfectly estimated, i.e., Ŝ(z) = S(z)). Figure
7 illustrates the experimental setup. The noise control filter
length was 512 samples.

A. Performance Comparison

We evaluated the proposed method under various α-stable
noise conditions: α = 1.65 (Case 1), α = 1.45 (Case 2), and
time-varying α (Case 3). Table I lists the compared methods
and parameter settings.

TABLE I: Parameter settings of algorithms.

Algorithm Parameters
FxLMS µ = 0.3
FxlogLMS µ = 0.5
Th-FxLMS µ = 0.4, c1, c2 = 0.1
FxLCH µ = 0.03, ρ = 10
GSN-FxlogLMS+ µ = 0.016, G = 7.5, λ = 0.99

Figures 8 show the ANR results for each case. As the
noise becomes more impulsive, higher robustness is required.
In Case 3, where α varies over time, algorithms must adapt
dynamically without reinitialization, making it particularly
challenging.

The results indicate that the proposed method effectively
suppresses noise, even in high-kurtosis cases such as α =
1.45. Compared to the best-performing conventional method,
GSN-FxlogLMS+ achieved an additional 2.8 dB improvement
in ANR under highly impulsive conditions (Case 2). This
demonstrates its superior capability to handle extreme noise
spikes, while maintaining stable adaptation throughout the
entire signal duration.

Particularly in Case 3, where α varies over time, GSN-
FxlogLMS+ outperformed all conventional methods, confirm-
ing its ability to adapt dynamically without re-initialization.
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(a) Case 1 : α = 1.65 (left: ANR, center: enlarged ANR, right: waveform of primary noise).

(b) Case 2 : α = 1.45 (left: ANR, center: enlarged ANR, right: waveform of primary noise).

(c) Case 3 : α = 1.85, 1.45, 1.65 (left: ANR, center: enlarged ANR, right: waveform of primary noise).

Fig. 8: ANR results for each case.

VI. CONCLUSION

Despite these advancements, existing methods still struggle
to balance robustness, convergence speed, and computational
efficiency.

To address this, we propose GSN-FxlogLMS+, which com-
bines an adaptive robust error function with step-size normal-
ization. Our method enhances stability under impulsive noise
while maintaining fast adaptation, without requiring manually
set thresholds or additional constraints.

Experimental evaluations demonstrate that GSN-
FxlogLMS+ surpasses conventional methods in terms of
both robustness and convergence speed, particularly in highly
impulsive environments.
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